python实现采用Alpha-Beta剪枝搜索实现黑白棋AI源码(人工智能期末作业).zip 黑白棋 实验要求: 使用 『最小最大搜索』、『Alpha-Beta 剪枝搜索』 或 『蒙特卡洛树搜索算法』 实现 miniAlphaGo for Reversi(三种算法择一即可)。 使用 Python 语言。 算法部分需要自己实现,不要使用现成的包、工具或者接口。 Result: 实现 AIPlayer 类,采用 Alpha-Beta 剪枝搜索实现黑白棋 AI
基于Pytorch框架自定义7层卷积神经网络模型实现垃圾分类系统源码+数据集+项目说明(人工智能期末作业).zip 垃圾分类 实验要求: 利用深度学习模型完成垃圾分类 图片数据集来源:https://momodel.cn/explore/5d411ace1afd9427c236eab5?type=dataset Result: 使用 PyTorch 自定义 7 层卷积神经网络加 2 层全连接层的分类模型
python实现基于区域二元线性回归模型进行图像恢复源码+项目说明(人工智能期末作业).7z 图像恢复 实验要求: 生成受损图像,函数接口 noise_mask_image 受损图像是由原始图像添加了不同噪声遮罩(noise masks)得到的 噪声遮罩仅包含 {0,1} 值。对原图的噪声遮罩的可以每行分别用 0.8/0.4/0.6 的噪声比率产生的,即噪声遮罩每个通道每行 80%/40%/60% 的像素值为 0,其他为 1。 使用区域二元线性回归模型,进行图像恢复。 评估误差为所有恢复图像与原始图像的 2-范数之和,此误差越小越好。 Result: 使用线性模型以 10 x 10 的区域为单位,进行像素预测,直到完成整张图片的像素预测,完成图像恢复