简介 用keras实现ocr定位、识别,后端tensorflow. 环境 win10 titanx 识别 数据集链接: https://pan.baidu.com/s/1jJWfDmm 密码: vh8p (中英数300W+,语料不均衡) crnn:vgg + blstm + blstm + ctc densenet-ocr :densent + ctc 网格结构 GPU 准确率 模型大小 crnn 60ms 0.972 densent+ctc 8ms 0.982 18.9MB
2022-07-03 21:08:29 1.38MB 人工智能 图像识别 OCR keras
使用python+flask搭建的一个网站,然后从网页的写字板上获取鼠标手写的汉字经过转码后传回后台,并经过图片裁剪处理之后传入CNN手写中文识别的模型中进行识别,最后通过PIL将识别结果生成图片,最后异步回传给web端进行识别结果展示。中文总共50,000多汉字,常用的有3,755个。这里主要对常见的3755个汉字进行识别。
2022-07-03 21:08:27 24.71MB 人工智能 图像识别 手写汉字
包括经典图像识别网络、目标检测、人脸识别、图像分割等
1
人工智能-项目实践-植物分类-基于SVM的Plant Seedlings Classification植物分类 基于SIFT特征、颜色特征、HOG特征的SVM分类模型,使用的是传统的特征提取和机器学习的方法。未涉及神经网络等深度学习方法 本模型在Kaggle平台提交后可以达到0.9的Score
2022-05-26 12:05:51 60KB 文档资料 人工智能 图像识别 农业
人工智能-项目实践-图像识别-keras使用迁移学习实现医学图像二分类(AK、SK) 问题描述 要解决的是一个医学图像的二分类问题,有AK和SK两种病症,根据一定量数据,进行训练,对图像进行预测。 解决思路 整体上采用迁移学习来训练神经网络,使用InceptionV3结构,框架采用keras. 具体思路: 读取图片数据,保存成.npy格式,方便后续加载 标签采用one-hot形式,由于标签隐藏在文件夹命名中,所以需要自行添加标签,并保存到.npy文件中,方便后续加载 将数据分为训练集、验证集、测试集 使用keras建立InceptionV3基本模型,不包括顶层,使用预训练权重,在基本模型的基础上自定义几层神经网络,得到最后的模型,对模型进行训练 优化模型,调整超参数,提高准确率 在测试集上对模型进行评估,使用精确率、召回率 对单张图片进行预测,并输出每种类别的概率
人工智能-项目实践-图像识别-基于深度学习的图像超分辨率重建及其在医学影像上的应用 前言 介绍图像超分辨率问题、研究现状、前景,介绍在医学图像上进行超分辨率的重要性。 自然图像上的超分辨率研究 在 DIV2K 数据集(800 train + 100 val)进行实验。选取 baseline 模型为 ESPCN、DWSR、EDSR。针对这些模型的不足之处,提出改进:使用小波 + U-Net + 感知损失多任务学习的 LU-MWCNN模型,达到超越 baseline 的效果。 医学图像上的超分辨率应用 在 DeepLesion 数据集(CT 图像)的 Key_slices 上进行实验,同样与 baseline 模型进行对比。提出 CT-LPIPS,利用一个类 VGG 网络训练。 医学图像超分辨率平台开发 以 CT 图像为例,搭建 Web 服务,借助 Cornerstone.js 库,医生可预览 DICOM,或将图像发送至后端重建服务,以获得超分辨完成的结果。后端采用 Flask + PyTorch 进行部署和实时推理。 总结
2022-05-25 11:07:19 9.52MB 人工智能 图像识别 医学图像 图像重建
人工智能-项目实践-图像识别-基于 MobileNetV2 的人脸口罩检测识别 基于 tf.keras 的训练模型 MobileNetV2 搭建一个深度卷积神经网络进行人脸口罩检测识别, 使用 1070Ti 训练 15 个 epoch 准确率达 96%. 环境 Python 3.7 tensorflow 2.2.0 CUDA Version 10.1.243 数据集 数据集全部来自于网络公开数据.
2022-05-23 12:05:50 35.21MB 人工智能 图像识别 MobileNetV2 tensorflow