《人工智能概论期末大作业报告》是南京邮电大学针对人工智能概论课程的一份重要学习成果展示,旨在考察学生对人工智能基本概念、理论和技术的掌握程度。这份报告涵盖了多个方面的内容,包括机器学习、神经网络、自然语言处理、计算机视觉等关键领域的基础理论和实际应用。 人工智能概论主要探讨的是人脑智能与机器智能的对比,以及如何通过算法和计算能力模拟人类智能。在报告中,学生可能需要深入解释人工智能的定义,以及它在现代社会中的重要性。这涉及到人工智能的分类,如弱人工智能和强人工智能,以及它们各自的应用场景。 机器学习是人工智能的核心组成部分,它是让计算机通过数据自我学习和改进的方法。报告中可能会详细讨论监督学习、无监督学习和强化学习三种主要的学习方式,以及各自的优势和应用场景。比如,监督学习中的支持向量机(SVM)和决策树,无监督学习中的聚类算法,如K-means,以及强化学习中的Q-learning算法。 再者,神经网络是模仿人脑神经元结构的复杂模型,用于解决非线性问题。报告中会介绍神经网络的基本架构,如前馈神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并可能涉及到深度学习的概念,如深度信念网络(DBN)和深度卷积网络(DCN)。 自然语言处理(NLP)是人工智能领域的一个重要分支,关注如何让计算机理解和生成人类语言。报告中可能包含词法分析、句法分析、语义理解等内容,以及相关的NLP技术,如词嵌入(Word2Vec)、情感分析和机器翻译。 计算机视觉是让机器“看”世界并理解图像信息的学科。报告中会涉及图像分类、目标检测、图像识别等任务,可能会讨论到经典算法如SIFT和HOG,以及现代深度学习模型,如YOLO和Mask R-CNN。 Python作为人工智能的主流编程语言,会在项目实践中起到至关重要的作用。"pythonProject1"可能是一个使用Python实现的人工智能项目,例如基于机器学习的预测模型,或使用深度学习进行图像识别的系统。通过这个项目,学生可以将理论知识转化为实际操作,加深对人工智能技术的理解。 这份期末大作业报告全面覆盖了人工智能的基础理论和实践应用,是对学生学习成果的综合评价,也是他们展示自己在人工智能领域知识和技能的平台。通过这样的学习过程,学生不仅能掌握理论知识,更能具备解决实际问题的能力,为未来在这个快速发展的领域中持续探索打下坚实的基础。
2025-10-23 16:23:03 29.93MB 人工智能概论
1
猫狗分类图片 anomaly_data.csv apple_detect.ipynb chip_test.csv cnn.ipynb data.csv data_class_processed.csv data_class_raw.csv data_new.csv data_single.csv dog_test.jpg examdata.csv excel1.xlsx improve.ipynb iris.ipynb iris_data.csv kmeans.ipynb kmeans_data.csv logistic.ipynb LSTM_text.txt mlp.ipynb MLP_test_data.csv MLP_test_data.xlsx model1.m rnn.ipynb sport.ipynb T-R-test.csv T-R-train.csv test1.ipynb transfer_data.csv transfer_data.ipynb transfer_data2.csv Untitled.ipynb usa_house_predict.ipynb usa_housing_price.csv zgpa_predict_test.csv zgpa_test.csv zgpa_train.csv 寻找普通苹果与其他苹果.ipynb 迁移学习 二次函数拟合.ipynb
2025-10-22 13:34:07 149.93MB
1
人工智能的基础数学
2025-10-22 09:38:30 14.87MB
1
内容概要:本文是一份关于基于BP神经网络的模式识别实验报告,详细介绍了BP神经网络的基本结构与原理,重点阐述了前向传播与反向传播算法的实现过程。通过构建包含输入层、隐含层和输出层的简化神经网络,利用“异或”真值表进行模型训练与验证,并进一步应用于小麦种子品种分类的实际案例。实验涵盖了数据预处理(如归一化)、网络初始化、激活函数选择(Sigmoid)、误差计算与权重更新等关键步骤,提供了完整的Python实现代码,并通过交叉验证评估模型性能,最终实现了较高的分类准确率。; 适合人群:具备一定编程基础和数学基础,正在学习人工智能、机器学习或神经网络相关课程的本科生或研究生,以及希望深入理解BP算法原理的初学者。; 使用场景及目标:①理解BP神经网络中前向传播与反向传播的核心机制;②掌握反向传播算法中的梯度计算与权重更新过程;③通过动手实现BP网络解决分类问题(如XOR逻辑判断与多类别模式识别);④学习数据预处理、模型训练与评估的基本流程。; 阅读建议:建议结合实验代码逐段调试,重点关注forward_propagate、backward_propagate_error和update_weights等核心函数的实现逻辑,注意训练与测试阶段数据归一化的一致性处理,以加深对BP算法整体流程的理解。
1
**Python与Dlib库的深度解析** Python是一种广泛使用的高级编程语言,因其简洁的语法和丰富的库支持而在数据科学、机器学习和人工智能领域备受青睐。其中,Dlib是一个功能强大的C++工具包,同时提供了Python接口,使得在Python中使用Dlib变得非常便捷。这个压缩包"python3.12对应的dlib-19.24.99-cp312-cp312-win_amd64"是专门为Python 3.12版本设计的,包含了Dlib库的预编译版本,适用于64位的Windows操作系统。 Dlib库由戴维·马库斯(Davis King)开发,其主要特点包括以下几个方面: 1. **机器学习算法**:Dlib包含了各种机器学习算法,如支持向量机(SVM)、随机森林、神经网络等,为开发者提供了构建复杂模型的工具。 2. **计算机视觉**:Dlib在计算机视觉领域有着广泛的应用,如人脸识别、物体检测、图像对齐等。其中,最著名的是它的面部识别算法,它基于一种称为“高维特征直方图”(Histogram of Oriented Gradients, HOG)的方法,可以实现高效且准
2025-10-20 20:09:39 2.73MB python 编程语言 机器学习 人工智能
1
20国语言在线客服/AI智能客服/消息预知已读未读/多商户机器人/im即时通讯聊天 1.新增客服坐席消息互动,客服之间可以互相接收消息 2.新增消息预知功能,可提前预知访客已输入未发送的消息显示 3.重构wk通信接口,消息即时接收,修正访客在线离线状态 4.新增 语音/图片/文件/留言/翻译/消息下载等功能控制开关 5.新增在线拨号功能,后台可控制编辑 6.优化手机商户后台,可手机管理pc端后台功能 7.优化新的UI聊天窗口界面,美观大气时尚 上传源码、创建数据库、访问域名/install.php执行安装引导
2025-10-18 14:32:52 225.98MB 人工智能 在线客服
1
Transformer模型是深度学习领域中的一个里程碑,特别是在自然语言处理(NLP)任务中,它以其高效、平行化处理的能力革新了序列建模。本篇文章将深入解析Transformer v1.3.1的核心概念、架构和应用,帮助你全面理解这一强大的模型。 Transformer由Vaswani等人在2017年的论文《Attention is All You Need》中首次提出,它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),引入了自注意力(Self-Attention)机制,解决了长序列处理的效率问题。Transformer模型的主要组成部分包括编码器(Encoder)和解码器(Decoder),每个部分由多个相同的层堆叠而成,每个层又包含两个关键组件:自注意力层和前馈神经网络层。 1. 自注意力机制:这是Transformer的核心,它允许模型在处理序列时同时考虑所有元素,而不是像RNN那样按顺序进行。自注意力分为查询(Query)、键(Key)和值(Value),通过计算查询与键的相似度得到权重,然后加权求和得到上下文向量,这样每个位置都能获取到整个序列的信息。 2. 多头注意力:为了解决单个注意力机制可能存在的局限性,Transformer采用了多头注意力。每个头部使用不同的参数计算自注意力,然后将多个头部的结果拼接起来,增加模型的表示能力。 3. 填充Masking:在解码器部分,为了防止未来信息的泄露,使用填充Masking来阻止解码器访问未预测的输入。 4. Positional Encoding:由于Transformer模型不包含循环结构,无法自然地捕获序列的位置信息,因此引入了位置编码,它是向输入序列添加的固定模式,使得模型能够识别序列的顺序。 5. Layer Normalization和残差连接:这些技术用于加速训练并提高模型的稳定性和收敛速度,它们分别在每一层的输入和输出处应用。 6. 编码器-解码器结构:编码器负责理解输入序列,解码器则根据编码器的输出生成目标序列。在解码器中,还有额外的掩码自注意力层,确保在生成目标序列时,当前位置只能依赖于已生成的序列元素。 Transformer模型在机器翻译、文本生成、问答系统等NLP任务上取得了显著成效,并被广泛应用于其他领域,如音频处理和图像识别。其可扩展性和并行性使其在大型预训练模型如BERT、GPT系列中成为基础架构,进一步推动了预训练-微调范式的流行。 Transformer v1.3.1是深度学习中的关键模型,它的创新设计不仅改变了序列建模的方式,也为AI领域的诸多进步铺平了道路。深入理解Transformer的工作原理和应用场景,对于任何想要在NLP或相关领域深入研究的人来说都是至关重要的。
2025-10-17 02:55:27 2.96MB 深度学习 人工智能 transformer
1
在当今信息技术飞速发展的时代,数据标识融合技术作为一项关键性的技术,在多个领域发挥着至关重要的作用。其中,本体理论作为一种形式化的知识表示方法,提供了有效的工具和方法来处理多源数据的整合和融合问题。本体理论的优势在于其能够清晰地表达领域知识的结构,并提供了一个共享和复用知识的框架,从而实现不同数据源之间的无缝整合。 多源数据标识融合算法的研究背景与意义主要体现在其能够帮助实现数据资源的整合利用,推动知识发现,以及提高数据处理的效率和质量。在现实世界中,数据来源繁多且复杂,数据之间存在异构性和分布性,如果能够实现有效的数据标识融合,则可以为数据分析、决策支持、模式识别等提供更为准确和全面的信息基础。 在研究现状方面,从数据标识融合技术发展到本体理论的应用研究,再到多源数据融合技术的发展,学术界和工业界都已经有了一系列的研究成果和应用案例。目前在这一领域仍然存在着一系列的挑战,例如如何有效处理大规模、多样的数据源,如何保证融合结果的准确性和一致性,以及如何提高算法的效率和可扩展性等。 针对这些挑战,研究的目标与内容主要集中在设计和实现一套基于本体理论的多源数据标识融合算法,该算法不仅能够处理不同来源和格式的数据,而且能够保证融合结果的质量和效率。研究方法与技术路线方面,通常需要采用模型驱动和数据驱动相结合的策略,综合运用本体构建、数据表示、映射、相似度计算等关键技术,以实现对多源数据的高效整合。 在技术基础方面,数据标识的基本概念、表示方法,本体理论的定义、结构、构建方法,以及多源数据融合的基本概念和技术等都是必要的知识储备。此外,数据标识融合算法的基本流程和常用算法也是研究的重点。通过这些理论和技术的学习和研究,可以为设计有效的多源数据标识融合算法提供坚实的理论基础。 在实际应用中,基于本体的数据标识表示与映射是实现数据融合的关键环节。其中,本体构建方法研究包括了数据来源的选择、构建工具与平台的利用,以及针对数据标识的本体构建方法。数据标识本体设计关注于本体中类、属性和关系的定义,而数据标识表示方法研究则关注于如何基于本体来进行数据标识的表示以及数据标识的语义描述。此外,本体间数据标识映射方法的研究则关注于映射的必要性、方法研究,以及基于相似度计算的映射方法。 基于本体理论的多源数据标识融合算法研究,通过引入本体理论,可以有效地解决多源数据融合过程中遇到的概念统一、语义互操作等问题。这项研究对于推动数据融合技术的发展,增强数据处理和分析的能力,具有重要的理论价值和广泛的应用前景。
2025-10-16 16:33:42 126KB 人工智能 AI
1
基于卷积神经网络的阿尔茨海默症分类代码 共包含9888张阿尔茨海默症MRI图像 本代码旨在借助深度学习方法对阿尔茨海默症(Alzheimer’s Disease, AD)患者的磁共振成像(Magnetic Resonance Imaging, MRI)图像进行分类分析,以提升疾病早期诊断的准确性与效率。研究重点评估了三种主流卷积神经网络模型——ResNet、MobileNetV3 和 DenseNet121 在该任务中的应用效果,并通过对比实验分析各模型在图像分类中的性能差异,涵盖准确率、召回率、精确率及 F1 分数等关键评价指标。 原文链接:https://blog.csdn.net/qq_42492056/article/details/148675350 结果显示 DenseNet121 在多个指标上表现优越,其准确率、召回率、精确率和 F1 分数分别为 0.9889、0.9894、0.9894 和 0.9901,优于其余模型。除了性能比较外,本研究还探讨了将深度学习模型集成到医学图像分析流程中的可行性,并设计并开发了一个针对 AD 图像分类的系统原型,进一步验证了该技术在实际临床辅助诊断中的应用前景与实用价值。
2025-10-15 13:40:17 274.74MB 人工智能 图像分类 python 毕业设计
1
在现代科技的浪潮中,人工智能(AI)无疑是最前沿的领域之一。作为AI技术的重要组成部分,机器学习已经深入到各行各业,从医疗保健到金融分析,从智能推荐系统到自动驾驶汽车。在这个过程中,人工智能训练师的角色变得至关重要。他们负责设计、训练和优化AI模型,以确保其能够准确地完成既定任务。 “人工智能训练师11.3”似乎是一份指导手册,意在向人工智能训练师提供深入的技术指导和操作指南。这本手册可能包含理论知识、实践案例、操作流程、工具使用指南以及可能遇到的问题及其解决方案等丰富内容。尤其值得注意的是,它提到了“4级3级”,这可能指的是训练师的技能等级或者是AI模型训练过程中的某一特定阶段。 这份文件可能特别针对使用Python语言的训练师。Python作为一门广泛使用的高级编程语言,在数据科学、机器学习和AI领域中占据了主导地位。它拥有丰富的库和框架,如TensorFlow、PyTorch、Scikit-learn等,使得AI模型的创建、训练和部署更加便捷高效。 为了成为一位合格的人工智能训练师,从业者需要掌握一系列的技能和知识。他们需要有扎实的数学基础,特别是线性代数、概率论、统计学和优化理论。熟悉机器学习算法和模型是必不可少的,包括监督学习、非监督学习、强化学习等。此外,了解深度学习的原理和应用,如卷积神经网络(CNN)和循环神经网络(RNN),也是非常重要的。 人工智能训练师的工作流程大致可以分为数据处理、模型选择、训练优化、测试评估和模型部署等环节。在数据处理阶段,训练师需要进行数据清洗、特征工程和数据集划分等工作。模型选择阶段则涉及到基于问题的需求挑选合适的机器学习或深度学习模型。训练优化阶段需要训练师使用各种优化技术来提升模型的性能。测试评估阶段,训练师需要利用各种评估指标来检验模型的准确性和泛化能力。模型部署阶段则将训练好的模型应用到实际的产品或服务中去。 然而,成为人工智能训练师并不仅仅局限于技术层面的掌握。沟通协作能力、持续学习和创新意识也是训练师所必需的。他们需要与领域专家、产品经理和其他技术团队成员有效沟通,以确保AI模型能够满足实际需求并提供价值。同时,技术的快速迭代要求他们不断学习最新的研究成果和技术,以保持自身竞争力。 人工智能训练师的角色在未来将会越来越重要。随着技术的不断进步,AI的应用将更加广泛,对训练师的专业能力要求也将越来越高。因此,掌握相关技能并不断学习更新知识对于希望在这一领域发展的专业人士来说至关重要。
2025-10-12 23:23:56 296.77MB python
1