多层网络是一种复杂系统建模的方式,它由多层或多个层次组成,每一层包含不同的节点和连接,可以表示不同的信息或网络关系。关键节点在多层网络中起着至关重要的作用,它们往往是网络功能实现、信息流动和网络结构稳定的关键所在。智能识别技术则致力于通过先进的算法和模型识别这些关键节点,对于网络分析、优化甚至控制都有重要意义。 研究背景与意义部分通常会讨论多层网络和关键节点识别技术的重要性,以及这些技术在现实世界中的应用场景,比如社交网络分析、生物网络研究、供应链管理等。这有助于理解为什么要发展和应用这些技术。 多层网络的定义与特点、模型分类以及应用领域是研究的基础内容。定义与特点部分可能会解释多层网络的基本概念,而模型分类则会涉及不同类型的多层网络,如双边网络、多模态网络等。应用领域则说明多层网络在不同行业中的具体用途。 关键节点的定义及其重要性强调了关键节点在多层网络中的核心地位。常见关键节点识别方法则介绍了目前用于识别这些节点的技术,比如基于图论的方法、基于统计的方法和基于机器学习的方法等。每种方法都有其优缺点,适用于不同类型的网络和需求。技术挑战部分则描述了在识别关键节点过程中遇到的问题,如高维性、稀疏性和动态性等。 在多层网络中识别关键节点是研究的重点之一。这涉及到多层网络节点重要性分析方法、基于图论的关键节点识别算法和基于机器学习的关键节点识别模型。这些内容对于理解如何从复杂的多层网络结构中提取关键信息至关重要。 智能识别技术的研究进展则聚焦于最新的发展动态,包括智能优化算法、深度学习技术和强化学习在关键节点识别中的应用。智能优化算法,如遗传算法、粒子群优化等,能够帮助找到网络中最有影响的关键节点。深度学习技术,尤其是卷积神经网络、循环神经网络等,已经在处理复杂网络数据方面显示出巨大的潜力。强化学习则在动态识别关键节点方面提供了新的思路和方法。 实验设计与结果分析部分会展示如何通过实验来验证关键节点识别技术的有效性。这可能包括数据集的选择和处理、实验方案的设计以及实验结果的对比分析。通过这些实验,研究者可以评估不同方法和技术的性能,为后续的研究提供依据。 结论与展望部分对研究成果进行总结,并指出当前研究中存在的问题与不足。同时,这部分也提出了未来研究的方向,可能包括如何改进现有算法、如何处理更大规模的网络以及如何应对更复杂的网络动态变化等。 多层网络与关键节点的智能识别技术研究不仅是理论上的探讨,还紧密联系着实际应用。通过这些技术的应用,可以更好地理解和优化现实世界中的复杂网络,为相关领域带来革新。
2025-11-24 20:04:02 108KB 人工智能 AI
1
内容概要:本文档为《2025三届人工智能工程技术赛项-样题》,涵盖自然语言处理、计算机视觉和综合工程技术三大模块的竞赛任务。参赛者需在指定.ipynb文件中完成代码编写,涉及新闻文本分类、对抗样本评测与模型加固、非均衡图像分类、目标检测(DETR模型)、开放词汇检测等任务,重点考察数据预处理、模型构建、训练优化、结果可视化及评估能力。要求选手掌握PyTorch、Transformer、ResNet、DETR、CLIP、SAM等框架与模型的应用,并完成相应代码实现与结果截图提交。 适合人群:具备一定人工智能基础,熟悉深度学习框架(如PyTorch)和常用模型(如CNN、Transformer)的高校学生或从业人员,具备1年以上AI开发经验者更佳;适合备战技能竞赛的技术人员。 使用场景及目标:①用于全国技能大赛人工智能赛项的备赛训练;②提升在NLP、CV及多模态任务中的工程实现能力;③掌握对抗样本防御、非均衡分类、目标检测优化、开放词汇检测等前沿技术的实际应用;④熟悉从数据处理到模型部署的全流程开发规范。; 阅读建议:建议结合实际代码环境边运行边学习,重点关注各模块中需补全的关键代码逻辑(如标签平滑、mixup增强、GIoU计算、匈牙利匹配、KL蒸馏等),并严格按照任务要求保存输出结果与模型文件,确保符合评分规范。
1
人工智能作为一门综合性的科学,其发展历史错综复杂,它不仅涉及到计算机科学,还融合了逻辑学、认知科学等众多领域的知识。其核心目标是使计算机系统能够模拟人类的智能行为,执行需要人类智能才能完成的复杂任务。人工智能的发展,大致可以分为以下几个重要阶段: 在50年代,人工智能的概念首次提出,随之出现了一批重要成果,例如机器定理证明、跳棋程序、通用问题求解程序以及Lisp表处理语言等。但受限于消解法推理能力的局限,以及机器翻译等方面的失败,人工智能在当时遭遇了低谷。 进入60年代末至70年代,专家系统的出现重新点燃了人工智能研究的热情。一系列的专家系统,如Dendral化学质谱分析系统、Mycin疾病诊断和治疗系统、Prospector探矿系统和Hearsay-ii语音理解系统等,将人工智能研究推向了实用化。1969年,国际人工智能联合会议的成立进一步推动了人工智能的发展。 到了80年代,随着第五代计算机的研制,人工智能的研究再次得到了飞跃。日本发起了“第五代计算机研制计划”,旨在通过计算机技术实现与数值运算同等快速的逻辑推理。尽管该计划最终未能完全成功,但引发了人工智能研究的新高潮。 80年代末期,神经网络的飞速发展成为了人工智能领域的新亮点。美国于1987年召开的第一次神经网络国际会议标志着神经网络学科的诞生。此后,各国对神经网络研究的投资逐渐增加,该领域得到了迅速的发展。 进入90年代,由于网络技术,尤其是国际互连网技术的进步,人工智能的研究焦点从单一智能主体转向了基于网络环境下的分布式人工智能研究。人工智能开始面向更加实用的应用,例如分布式问题求解以及多个智能主体的多目标问题求解。同时,由于Hopfield多层神经网络模型的提出,人工智能的研究进一步深化。 在人工智能的应用方面,机器翻译系统作为一例,展示了人工智能在日常生活和学习中的重要作用。通过计算机将一种自然语言翻译成另一种自然语言的过程,人们可以方便地完成语言翻译工作。国内的“金山词霸”等机器翻译软件,不仅提供了快捷的查询英文单词和词组句子翻译功能,还具备发音功能,极大地方便了用户。 通过对人工智能发展历程和应用的了解,可以认识到这门学科的挑战性和跨学科性。从事人工智能工作的人不仅需要掌握深厚的计算机知识,还必须具备心理学和哲学的素养。展望未来,人工智能的发展将继续深化,为社会带来更广泛的影响和更多的可能性。
2025-11-24 14:48:53 19KB
1
深度学习在人工智能领域占据着核心地位,特别是在计算机视觉任务中,如人脸识别、图像分类和对象检测等。MegaAge-asian人脸年龄数据集是专为训练和评估深度学习模型而设计的一个大型数据集,尤其适合研究人脸识别中的年龄估计问题。 这个数据集由40,000张亚洲人的脸部图像组成,涵盖了从0岁到70岁的广泛年龄范围。这意味着模型在处理此数据集时,不仅需要识别面部特征,还要准确判断个体的年龄,增加了任务的复杂性。数据集中的图像大部分来源于两个知名的人脸数据集——MegaFace和YFCC,这两个数据集都包含大量多源、多样性的面部图像,从而保证了MegaAge-asian数据集的多样性和广泛性。 在进行年龄分类时,深度学习模型通常采用卷积神经网络(CNN)作为基础架构。CNN能够自动学习和提取图像的层次特征,从低级边缘和纹理到高级的面部结构和表情。对于年龄预测,模型可能会在最后一层使用全局平均池化或全连接层,将高层特征映射到年龄标签。 训练一个有效的年龄分类模型需要遵循以下步骤: 1. 数据预处理:对图像进行归一化,调整大小,以及可能的光照、姿态校正,以减少非面部因素的影响。 2. 数据增强:通过随机旋转、裁剪、缩放等方式增加数据集的多样性,防止过拟合。 3. 模型选择:选取合适的CNN结构,如VGG、ResNet、Inception或预训练的FaceNet模型,根据任务需求进行微调。 4. 训练策略:设置损失函数(如交叉熵),优化器(如Adam或SGD),并确定学习率等超参数。 5. 评估与验证:使用交叉验证或保留一部分数据作为验证集,评估模型性能,如准确率、精度、召回率和F1分数。 6. 泛化能力测试:在未见过的数据上测试模型,以检验其在现实世界中的表现。 除了年龄估计,MegaAge-asian数据集还可以用于其他相关研究,如人脸识别、表情识别甚至性别分类。它为研究人员提供了丰富的资源,推动了深度学习在人脸识别领域的进步,并有助于开发更加智能、精准的AI应用。在这个过程中,深度学习模型的训练和优化是关键,数据的质量和量则是提升模型性能的基础。因此,像MegaAge-asian这样的大规模、多样化数据集对于推动人工智能的发展具有重要意义。
2025-11-24 11:20:28 276.97MB 深度学习 数据集 人工智能
1
海思平台CANN软件包是针对人工智能领域,特别是海思硬件平台进行AI开发的重要工具集。这个软件包的核心功能集中在ATC(Ascend Tensor Compiler)模型转换和海思平台的AI应用开发上,旨在帮助开发者高效地利用海思芯片的计算能力,实现高性能的AI模型部署。 1. ATC模型转换: ATC是海思CANN软件包中的关键组件,它负责将预训练的深度学习模型(如TensorFlow、PyTorch或MindSpore等框架下的模型)转换为海思 Ascend AI处理器能够执行的格式。这一过程通常包括以下步骤: - 模型解析:ATC首先读取并解析输入模型的定义文件,理解模型的结构和参数。 - 计算图优化:在转换过程中,ATC会进行一系列的计算图优化,如删除冗余操作、融合运算节点、减少数据传输等,以提升模型的运行效率。 - 硬件适配:ATC会根据海思芯片的硬件特性,对模型进行定制化编译,确保模型在硬件上的高效执行。 - 代码生成:ATC会生成对应的C++源代码和配置文件,这些代码可以直接在海思设备上运行。 2. 海思平台AI开发: 海思平台提供了丰富的AI开发工具和资源,包括开发环境设置、API接口、样例代码、文档教程等,使得开发者能够快速上手并进行模型的部署与优化。 - 开发环境:开发者需要安装CANN SDK,这是一个包含了驱动程序、运行库、开发工具等的完整开发环境,用于构建和运行AI应用程序。 - API接口:海思CANN提供了一套基于C++的API,开发者可以通过这些接口来调用硬件加速的功能,实现模型的推理。 - 样例代码:为了方便开发者理解和学习,CANN软件包通常会包含多个示例项目,涵盖了常见的AI应用场景,如图像识别、语音处理等。 - 性能调优:除了基本的模型部署,CANN还支持性能分析和调优工具,帮助开发者找出性能瓶颈,优化模型运行速度。 在实际应用中,开发者可以根据需求选择合适的模型进行转换,并结合海思提供的开发工具,完成AI应用的开发、测试和部署。海思平台的优势在于其硬件专为AI计算设计,能够提供高能效比的计算能力,对于需要在边缘设备上运行AI任务的场景尤为适用。 NNN_PC可能是该压缩包中的一个子文件或目录,可能包含了特定平台(如PC)的开发工具、库文件或其他相关资源。在使用时,开发者应根据文档指示,正确配置和使用这些资源,以充分利用海思平台的优势,实现高效、可靠的AI解决方案。
2025-11-20 16:36:28 804.86MB 人工智能
1
人工心脏起搏器是一种很精巧的、可靠程度很高的电脉冲刺激器,是应用一定型式的起搏脉冲发生器,与特制的导线(即:起搏导管电极)连接,和起搏电极发送电脉冲刺激心脏,使激动不能或传导不好的心脏应激而起搏的医疗电子仪器 在医疗技术不断进步的今天,植入式人工心脏起搏器已经成为治疗心律失常的重要手段。它能够有效模拟心脏自然的跳动节奏,为那些因心脏电生理异常而无法正常跳动的心脏提供帮助。这一设备的出现,不仅挽救了许多患者的生命,也极大地提高了他们的生活质量。 心脏起搏器主要由起搏导管电极和起搏脉冲发生器两个关键部分组成。起搏导管电极的作用是连接起搏器与心脏,一方面它可以检测心脏的自然搏动并将其反馈给起搏器,另一方面它能够将起搏器产生的电脉冲传递至心肌。随着技术的发展,现代起搏器使用的导管电极已经从最初的单极设计,演进为更为先进的双极甚至多极设计。这种进步有助于提升起搏效率,并减少不必要的副作用。电极导线的材料选择也十分考究,一般采用生物相容性极好的合金材料,如爱尔近合金或镍-铬-钴-钼合金,并以高纯硅橡胶或医用聚氨酯进行外部绝缘处理。电极头的表面通常使用低温热解碳或铂,以进一步增强其生物相容性和耐用性。 起搏脉冲发生器则是起搏器的核心,它负责生成并控制电脉冲。它通常由起搏电路、电池以及金属外壳构成。电池采用的是锂-碘电池,因其具备体积小、能量密度高和使用寿命长的优点。而起搏器的外壳则多采用钛金属制成,以确保其密封性和防止锈蚀。在起搏电路的设计上,一般采用集成电路技术,如CMOS ASIC芯片,结合电阻、电容等元件形成混合型厚膜集成电路,以实现高效的脉冲生成和控制。 植入式人工心脏起搏器在临床上的应用范围十分广泛,它能够为多种心脏疾病提供有效的治疗方案。适应症包括高度或完全性房室传导阻滞、三束支或双束支阻滞、二度II型房室传导阻滞、病态窦房结综合征、以及对药物治疗无效的快速心律失常等。对于这些疾病,植入起搏器能有效预防严重的心律失常,缓解诸如心脏供血不足、心力衰竭、心绞痛和晕厥等症状,对提高患者的生活质量有重要作用。 自1932年Hyman发明第一台人工心脏起搏器以来,这项技术已经取得了长足的进步。从最初的体外起搏器,到1958年和1960年的首次尝试植入式起搏器,再到如今具有长寿命、高可靠性的多功能起搏器,技术的发展使得起搏器更加接近于模拟心脏的自然搏动,减少因不协调导致的竞争心律,极大地提高了治疗效果。目前,起搏器的类型已包括同步型、房室同步触发型、心室按需型,以及双腔和全能型起搏器等多种类型,它们能够根据患者的特定需求进行个性化治疗。 展望未来,随着科技的进一步发展,植入式人工心脏起搏器有望变得更加智能化和个性化。我们可以预见,在不远的将来,起搏器将能够实时监测患者的心脏状况,并根据患者的具体活动水平和心脏反应来自动调整起搏频率。这种精准化的治疗不仅能够为患者带来更佳的治疗效果,还能极大地减轻患者的经济和心理负担。未来的起搏器可能还会集成更多先进的生物传感技术,实现更加全面的健康管理。随着医疗科技的不断突破,心脏起搏器将在预防和治疗心脏疾病方面发挥更加关键的作用。
2025-11-19 10:23:21 146KB 心脏起搏器
1
人工心脏起搏器是一种很精巧的、可靠程度很高的电脉冲刺激器,是应用一定型式的起搏脉冲发生器,与特制的导线(即:起搏导管电极)连接,和起搏电极发送电脉冲刺激心脏,使激动不能或传导不好的心脏应激而起搏的医疗电子仪器。 在当今医学领域中,植入式人工心脏起搏器扮演着一个至关重要的角色,尤其是在心脏病治疗的领域内。它作为一种能够模拟心脏自然搏动的医疗电子设备,有效地帮助了许多心脏电生理功能出现异常的患者,维持了他们的生命。本文旨在深入探讨植入式人工心脏起搏器的原理、结构、适应症以及技术的发展历程,以便我们更全面地了解这一重要的医疗设备。 起搏器主要由两部分组成:起搏脉冲发生器和起搏导管电极。起搏脉冲发生器含有精密设计的起搏电路、为设备提供能源的电池以及保护起搏器不受人体腐蚀的金属外壳。起搏器电路能够按照预设的模式产生电脉冲,从而刺激心脏搏动。目前常用的电池类型为锂-碘电池,它以长寿命和稳定的能量释放特性而被广泛采用。而起搏器的外壳则多采用钛材料,因为钛具有极佳的生物相容性,可以确保起搏器长期在体内安全使用。起搏导管电极的作用是将起搏器发出的电脉冲准确无误地传输至心脏,并能感知心脏的自然搏动,进而调整起搏脉冲的发放时机,确保心脏搏动的正常进行。 适应症的广泛性是人工心脏起搏器的另一大特色。无论是在心室传导系统还是心房传导系统出现传导阻滞,或是病态窦房结综合征引起的心动过缓,乃至对抗心律失常药物无效的病例,起搏器都可发挥其重要作用。特别是一些严重的传导系统疾病,如完全性房室传导阻滞或病态窦房结综合征,若不及时干预,均可能导致心脏无法正常供血,进而威胁生命。起搏器的植入,能够在很大程度上预防此类情况的发生。 人工心脏起搏器的发展历史可以追溯到20世纪30年代,不过起搏器的临床应用则是从1950年代才开始起步。在此之后,起搏器技术经历了迅速的发展。最初,起搏器是外置的,随着时间的推移,技术进步使起搏器逐步发展为小型的植入式设备,而且其功能也从最初的非同步单一功能发展到现如今的同步起搏、远程监测、程控管理等高级功能,极大地提高了患者的生活质量。 植入式人工心脏起搏器通过模拟心脏自然节律发出电脉冲,维持心脏正常搏动,帮助心脏功能异常患者。随着技术的革新,起搏器已经从一个简单的电子设备,进化为一个集先进电子技术、生物兼容材料以及精准控制算法于一体的高科技医疗设备。未来,随着科技的不断进步,我们可以预见人工心脏起搏器将更加智能化,其个性化程度也会进一步提高,以满足不同患者的具体需求,从而为患者带来更好的医疗体验和更长的生存期。
2025-11-19 10:20:58 151KB 信号调理
1
主要是关于人工智能、大语言模型、ChatGPT、Deepseek等各类AI学习的相关资料、文档。
2025-11-18 11:21:50 34.27MB 人工智能 AI学习
1
内容概要:本文系统讲解了LangChain的核心原理与Prompt Engineering实战应用,重点介绍如何从零构建可落地的对话式知识库。通过六大核心抽象(Schema、Model、PromptTemplate、Chain、Memory、Agent)实现模块化编排,结合RAG技术提升问答准确率,并以PDF文档问答为例展示了完整的技术闭环:文档加载、文本分块、向量化存储、检索增强生成与语义缓存优化。代码实例详尽,涵盖性能调优与压测验证,体现了高可用性和工程落地价值。; 适合人群:具备Python基础和NLP背景,从事AI应用开发、智能客服或知识管理系统研发的工程师,尤其是工作1-3年希望深入大模型应用层的技术人员; 使用场景及目标:①构建企业内部文档智能问答系统;②优化检索命中率与响应延迟;③降低大模型调用成本并控制幻觉输出;④实现可追溯、可缓存、支持多轮对话的企业级RAG应用; 阅读建议:建议结合代码环境动手实践,重点关注分块策略、语义缓存、自定义Prompt设计与性能压测环节,理解LangChain如何通过链式组合提升系统鲁棒性,并关注其在长上下文、Agent化与私有化部署方面的未来趋势。
2025-11-17 23:21:02 22KB Prompt Engineering
1
人工智能赋能的数字化智能工厂是制造业转型的重要方向,其通过高度自动化的生产线以及信息技术、制造技术与人工智能技术的深度融合,实现了制造过程的智能化、高效化和柔性化。智能工厂的定义和特点包括高度自动化,数据驱动的决策过程,灵活生产能力和资源节约与环保。在智能工厂中,自动化生产采用先进的设备和机器人,利用联网、大数据分析和人工智能技术,实现生产线的实时智能化管理,优化生产流程,提高效率和产品质量,减少无效工时和运营成本。 智能工厂的发展趋势体现在个性化定制、数字化与网络化、绿色制造等方面。个性化定制满足客户多样化和个性化的需求;数字化与网络化通过5G、物联网等技术实现设备间的互联互通,构建数字化、网络化的智能工厂;绿色制造则要求在制造过程中降低能耗、减少废弃物排放。 基于AI框架的智能工厂对制造业的意义重大。AI技术可以提高生产效率,降低运营成本,并增强市场竞争力。通过对生产过程的实时监测和智能化管理,AI技术确保了产品质量的稳定可靠,并可实现快速响应市场需求。 智能工厂的架构设计思路涉及系统整体架构、生产运营的管理、智慧生产与控制、以及智能物流等方面。系统整体架构基于大数据中心,实现制造能力与运营水平的提升;生产运营管理包括ERP、OA、EHR等系统的决策分析,提高制造水平;智慧生产与控制环节包括PDM、WMS、MES等任务令、生产、工艺、设备、物料、操作和环境管理;智能物流方面则通过AGV、传输线、机器臂等自动化设备实现生产线的无人化管理。 技术平台架构方面,智能工厂采用智能化云基础设施,结合智能大数据平台、多媒体平台、物联网平台和人工智能平台,实现计算与网络、存储和CDN、数据库、数据分析和多媒体服务等多方面的智能化。该架构还涉及到安全与管理、物联网服务、应用服务、网站服务应用引擎等,确保了智能工厂的高效、安全和可持续发展。 智能工厂的挑战主要包括技术、管理和运营等多方面的问题,例如数据安全、隐私保护、技术更新快速以及人才培养等。而其前景则包括智能化生产、网络化协同、规模化定制、服务和延申,以及虚拟化管理全生命周期等方向,为企业提供全价值链的优化方案,最终实现全产业链虚拟资源的有效利用。 展望未来,随着人工智能、边缘计算、工业以太网、卫星通信等技术的进一步发展,智能工厂将实现更加智能化的生产与管理。通过这些技术的综合运用,智能工厂将更好地适应市场变化,快速响应客户需求,实现供应链体系、金融体系的高效运作,为企业提供全方位的竞争优势。此外,人工智能与工业互联网的结合将推动智能工厂向更高层次的自动化和智能化发展,进一步提高制造业的整体水平和竞争力。
2025-11-17 17:33:35 5.55MB 人工智能 AI学习
1