"基于智能手机的人体跌倒检测系统" 智能手机的人体跌倒检测系统是一种基于信号向量模和特征量W相结合的跌倒检测算法,利用加速度传感器和陀螺仪监测人体姿态变化,有效减少了跌倒检测结果的假阳性和假阴性。该系统可以实时监测人体活动,结合GPS确定用户的跌倒位置,同时降低系统成本。 该系统的检测算法设计基于智能手机内置的加速度传感器和陀螺仪,分别测量三轴方向运动加速度和角速度大小信息。通过使用信号向量模(magnitude of signal vector, SVM)阈值法来识别区分低强度日常生活活动(activities of daily living, ADL)与跌倒,对于阈值法不能识别的较高强度ADL,则通过对角速度信号向量模数据进一步处理得到的新特征量来判别。 信号数据人体活动主要分为以下几种:躺下、步行、坐下—起立、上楼梯、下楼梯、慢跑、蹲下—起立以及跌倒等。智能手机的加速度传感器和陀螺仪输出的信号数据可以反映出人体日常运动姿态变化。 信号向量模(SVM)是跌倒发生时的加速度及角速度变化的主要特征量,可以将空间的加速度或角速度变化集合为一矢量。加速度信号向量模(SVMA)及角速度信号向量模(SVMW)的定义分别如式(1)和式(2)所示。 跌倒检测方法设计中,通过对人体摔倒过程及其它日常生活行为过程中实验结果数据SVMA和SVMW进行分析,识别跌倒的加速度信号向量模阈值取SVMAT =20m/s2 和角速度信号向量模阈值取SVMWT =4rad/s。 然而,慢跑等动作也具有大加速度和角速度峰值的特征,单独的SVM 特征量并不能区分摔倒过程与慢跑或手机日用等较高强度运动过程。因此,本文对角速度信号向量模数据作进一步处理,来寻找新的特征量。定义一个人体跌倒时躯干倾斜的合角度θ,它是通过对角速度信号向量模数据进行积分得到的。 该系统可以实时监测人体活动,结合GPS确定用户的跌倒位置,同时降低系统成本。该系统的检测算法设计基于智能手机内置的加速度传感器和陀螺仪,能够有效减少跌倒检测结果的假阳性和假阴性。
2024-11-04 15:47:14 1.12MB 智能手机 人体跌倒 检测系统 技术应用
1
基于智能手机的人体跌倒检测技术的研究与应用.pptx
2023-11-08 16:48:42 2.26MB
1
为了减少老年人因跌倒而造成的伤害, 及时有效地识别跌倒行为, 提出了一种基于三轴加速度传感器的人体跌倒识别方法。首先将加速度传感器放置于人体腰腹位置, 采集人在运动时的加速度变化数据; 然后使用日常活动数据训练隐马尔科夫模型 (HMM), 利用老年人活动状态相对较少的特点, 从测量数据与HMM的匹配程度寻找“疑似”跌倒行为; 最后计算短暂时间内的身体倾角, 检测人体躺卧姿态, 完成跌倒识别。利用HMM和身体倾角识别跌倒, 解决了生活中缺乏跌倒数据训练样本的问题, 提高了某些近似行为的区分度。仿真结果表明, 该方法在有效识别跌倒行为的同时, 提高了正确率。
1
基于Mediapipe框架+KNN算法实现人体3D骨架检测和人体跌倒识别系统源码+项目使用说明(毕设项目).zip 【项目介绍】 基于Mediapipe框架检测人体3D骨架,KNN算法识别人体是否跌倒。 【提取训练数据】 执行Train_Model.py文件,单击‘空格键’分别提取正常姿态,跌倒姿态数据为csv文件,作为训练数据。 【KNN算法对提取数据进行分类】 执行KNN-Model.py文件,进行数据分类。 【检测姿态】 执行Mediapipe_Poe.py文件,演示结果。 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习、cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码和项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。
行业分类-物理装置-人体跌倒检测及警示方法、装置及计算机可读存储介质.zip
基于安卓智能手机的加速度传感器检测人体跌倒,李晓敏,,为能及时救助跌倒的老年人,减少其受到的伤害,本文提出一种对人体跌倒进行检测的系统,该系统基于安卓操作系统的智能手机中的加
2021-04-02 20:00:21 546KB 首发论文
1
目前深度学习模型不能较好地把监控视频中跌倒行为的空间和时序特征有效结合起来。为此,提出基于CNN和LSTM(混合模型的人体跌倒行为识别方法
2021-03-17 20:05:32 1.29MB 深度学习
1
为减小老年人因跌倒造成的身心伤害,实现及时救助,设计了一种实用的人体跌倒检测器。采用三轴加速度传感器和ZigBee无线通讯实现人体运动状态的数据采集和传输,采用基于加速度向量幅值和人体姿态角检测算法实现跌倒检测,通过报警单元实现基于GSM模块的短信报警,利用对GPS数据解析实现跌倒事件的地理信息的Google显示。实验结果表明,该检测器对人体向前跌倒后平躺、向右跌倒后侧躺和向前跌倒后未平躺等状态判别准确率达到100%,监控界面良好。
2020-01-03 11:39:33 1.51MB 现代电子技术
1