# 基于PyTorch深度学习框架的人体行为检测项目
## 项目简介
此项目致力于通过深度学习方法检测从摄像机拍摄的视频中预先定义的多种人体行为。我们将开放获取的视频数据集作为输入,利用先进的深度学习模型进行行为识别与判断。
## 项目的主要特性和功能
1. 视频数据预处理: 提供Python脚本进行视频文件的处理,包括视频加载、帧提取以及图像预处理等步骤,为后续的行为检测提供数据基础。
2. 人体行为检测: 利用深度学习模型(如卷积神经网络CNN结合循环神经网络RNN等)进行人体行为的检测与识别。模型训练基于大量标注的行为数据,能够自动学习和识别多种预先定义的行为模式。
3. 实时视频处理: 提供交互式的视频处理工具,允许用户在视频播放过程中实时观察行为检测的结果,并进行标注和反馈。
4. 物体框标注工具: 提供简单的物体框标注工具,用于图像或视频中物体的标注工作,为后续的行为检测提供标注数据。
## 安装使用步骤
### 前提条件
2025-07-01 16:18:32
3.46MB
1