# 基于PyTorch深度学习框架的人体行为检测项目 ## 项目简介 此项目致力于通过深度学习方法检测从摄像机拍摄的视频中预先定义的多种人体行为。我们将开放获取的视频数据集作为输入,利用先进的深度学习模型进行行为识别与判断。 ## 项目的主要特性和功能 1. 视频数据预处理: 提供Python脚本进行视频文件的处理,包括视频加载、帧提取以及图像预处理等步骤,为后续的行为检测提供数据基础。 2. 人体行为检测: 利用深度学习模型(如卷积神经网络CNN结合循环神经网络RNN等)进行人体行为的检测与识别。模型训练基于大量标注的行为数据,能够自动学习和识别多种预先定义的行为模式。 3. 实时视频处理: 提供交互式的视频处理工具,允许用户在视频播放过程中实时观察行为检测的结果,并进行标注和反馈。 4. 物体框标注工具: 提供简单的物体框标注工具,用于图像或视频中物体的标注工作,为后续的行为检测提供标注数据。 ## 安装使用步骤 ### 前提条件
2025-07-01 16:18:32 3.46MB
1
MATLAB课题: 人体行为姿态识别
2023-05-03 10:51:35 8.7MB matlab 人体姿态识别 GUI
1
该课题为基于Matlab的异常行为检测。应用场景比如说,我国农村的空巢老人子女常年在外打工。而目前的监控属于被动式的监控,我们仅仅只能查看并且回放监控,不能对监控里面的某种信息作出判断和预警。该课题利用Matlab对监控中的画面的人体行为做一些监测和判别,一旦检测到有某些异常行为,比如说快跑慢跑跌倒等等作出提示,从而避免一些事故的发生,属于主动监控该设计,具有人际交互界面,需要具备一定编程基础的人员学习。
2023-04-04 10:17:04 8.71MB matlab
1
该课题为基于Matlab的异常行为检测。应用场景比如说,我国农村的空巢老人子女常年在外打工。而目前的监控属于被动式的监控,我们仅仅只能查看并且回放监控,不能对监控里面的某种信息作出判断和预警。该课题利用Matlab对监控中的画面的人体行为做一些监测和判别,一旦检测到有某些异常行为,比如说快跑慢跑跌倒等等作出提示,从而避免一些事故的发生,属于主动监控该设计,具有人际交互界面,需要具备一定编程基础的人员学习。
2023-02-28 13:01:32 6.45MB matlab
1
python人体行为识别,有界面可实时检测
2023-01-04 17:29:06 117.25MB python
为了提高Android平台下实时人体行为识别方法的性能,提出对动作变化和过渡动作进行检测和分割的方法。该方法采用加速度在重力方向上的投影和水平方向上投影的幅值来表征行为活动,通过趋势判断行为变化,结合趋势突变点检测和DTW算法进行过渡动作分割。提取加速度时域特征,使用随机森林对九种行为进行分类识别,平均识别率达到97.26%,其中过渡动作平均识别率达到95.05%。
2022-11-24 22:57:00 513KB 论文研究
1
该课题为基于Matlab的异常行为检测。应用场景比如说,我国农村的空巢老人子女常年在外打工。而目前的监控属于被动式的监控,我们仅仅只能查看并且回放监控,不能对监控里面的某种信息作出判断和预警。该课题利用Matlab对监控中的画面的人体行为做一些监测和判别,一旦检测到有某些异常行为,比如说快跑慢跑跌倒等等作出提示,从而避免一些事故的发生,属于主动监控该设计,具有人际交互界面,需要具备一定编程基础的人员学习。
1
行为分析Demo 视频效果:https://www.bilibili.com/video/BV1tB4y1W7mq?share_source=copy_web
2022-06-30 16:06:00 214.61MB 行为分析Demo 人体姿势识别
人体姿态的时空动作检测源码。应用场景比如说,我国农村的空巢老人子女常年在外打工。而目前的监控属于被动式的监控,我们仅仅只能查看并且回放监控,不能对监控里面的某种信息作出判断和预警。该课题利用Matlab对监控中的画面的人体行为做一些监测和判别,一旦检测到有某些异常行为,比如说快跑慢跑跌倒等等作出提示。人体姿态的时空动作检测源码。应用场景比如说,我国农村的空巢老人子女常年在外打工。而目前的监控属于被动式的监控,我们仅仅只能查看并且回放监控,不能对监控里面的某种信息作出判断和预警。该课题利用Matlab对监控中的画面的人体行为做一些监测和判别,一旦检测到有某些异常行为,比如说快跑慢跑跌倒等等作出提示
2022-05-27 12:05:21 8.64MB 源码软件 matlab 人体姿态源码 动作检测
目标检测——时间差分法 在连续的图像序列中两幅或三幅相邻帧之间采用基于像素的时间差分,并对差分结果进行阈值化处理以提取图像中的前景运动区域。 缺点: 前景、背景区域的确定与阈值的选取有很大的关系 当灰度图像序列对比度较低时,由于相邻两帧的差(前景与背景之差)的范围很小,阈值难以选取,影响前景目标的分割结果。 区域灰度值变化较为平坦时,容易在人体二值图像内产生空洞现象,给后续的目标分类、跟踪和识别造成不便。 优点: 对于动态环境有较强的自适应性
2022-05-23 14:23:25 1.47MB 人体行为识别
1