在IT领域,特别是人工智能和计算机视觉的分支,人体姿态估计是一项关键的技术。它涉及通过算法分析图像或视频,识别并定位人体的关键关节位置,如头部、肩部、肘部、手腕等。Python作为一门广泛应用于数据科学和机器学习的语言,为实现这一目标提供了丰富的库和工具。下面,我们将详细探讨在“Python-人体姿态估计资源精选列表”中可能涵盖的知识点。 我们关注的是Python库。OpenPose是其中的一个热门选择,它是一个跨平台的C++库,同时也提供Python接口。OpenPose能够实时地估计多人的全身2D和3D姿势,以及面部和手部的关键点。另一个常用库是Mediapipe,这是一个由Google开发的多平台解决方案,包含了多种计算机视觉任务的管道,包括人体姿态估计。 接着,深度学习框架在人体姿态估计中扮演着核心角色。TensorFlow和PyTorch是最常见的选择。它们提供了构建和训练神经网络模型的高效工具,例如可以使用这两者实现基于卷积神经网络(CNN)或递归神经网络(RNN)的人体姿态估计模型。还有一些预训练模型,如MSRA的COCO keypoints dataset上的HRNet或SimpleBaseline模型,可以直接应用或进行微调。 除了库和框架,数据集是训练和评估模型的关键。COCO(Common Objects in Context)数据集是人体姿态估计的标准数据集,包含了大量带注释的人体姿态图像。MPII和LSP是其他常用的数据集,可以帮助开发者训练和验证模型。 在实际应用中,人体姿态估计有多种应用场景,如体育分析、健康监测、虚拟现实、游戏互动等。对于这些场景,理解如何处理实时视频流、优化模型性能、减少计算资源消耗以及提高精度都是非常重要的课题。 社区和资源也是学习和研究的重要部分。GitHub上有很多开源项目和代码示例,如“awesome-human-pose-estimation-master”这样的仓库,提供了最新的研究成果、教程和实践案例。参与讨论论坛、阅读论文和技术博客,可以帮助开发者保持对最新技术趋势的了解。 Python-人体姿态估计资源精选列表涵盖了从基础的Python库和深度学习框架,到关键的数据集、应用场景,以及持续更新的社区资源。深入研究这个领域,将有助于开发者掌握前沿的计算机视觉技术,并在实际项目中实现创新的应用。
2025-05-23 18:51:53 89KB Python开发-机器学习
1
人体姿态估计 项目链接:https://link.zhihu.com/?target=https%3A//github.com 1)方向:姿势估计 2)应用:姿势估计 3)背景:基于热图的方法已成为姿势估计的主流方法,因为其性能优越。然而,基于热图的方法在使用缩小尺寸的热图时会遭受显著的量化误差,导致性能有限,并对中间监督产生不利影响。以往的基于热图的方法依赖于额外的后处理来减轻量化误差。一些方法通过使用多个昂贵的上采样层来提高特征图的分辨率,从而提高定位精度。 4)方法:为了解决上述问题,作者创造性地将骨干网络视为一个degradation(降质)过程,并将热图预测重新构造为超分辨率任务。首先提出了SR head,通过超分辨率预测高于输入特征图(甚至与输入图像一致)的热图,以有效减少量化误差,并减少对进一步后处理的依赖。此外,提出了SRPose方法,以逐渐在粗糙到精细的方式中从低分辨率热图和退化特征恢复高分辨率热图。为了减少高分辨率热图的训练难度,SRPose使用SR head来监督每个阶段的中间特征。另外,SR head是一个轻量级通用的头部,适用于自上而下和自下而上的方法。 《轻量级超分辨率头在人体姿态估计中的应用》 人体姿态估计是计算机视觉领域中的一个关键任务,它涉及到识别图像或视频中人物的关键关节位置,如肩、肘、膝等。这一技术广泛应用于动作识别、人机交互、体育分析等领域。近年来,基于热图的方法在姿态估计中取得了显著的进步,其原理是通过预测每个关节的二维概率分布热图,然后通过峰值检测确定关节位置。然而,基于热图的方法存在一个问题,即在使用缩小尺寸的热图时,会引入显著的量化误差,这限制了其性能并影响中间监督的效果。 为了解决这个问题,研究人员提出了一种新的方法,将骨干网络视为一个降质过程,将热图预测重新定义为超分辨率任务。这一创新思路体现在“轻量级超分辨率头”(SR head)的设计上。SR head的目标是通过超分辨率技术预测出的热图具有比输入特征图更高的空间分辨率,甚至可以与原始输入图像分辨率一致,从而有效地减少量化误差,降低对后续后处理步骤的依赖。这种方法不仅提高了定位精度,还简化了模型结构。 SRPose是基于SR head提出的一种逐步恢复高分辨率(HR)热图的策略。它采用粗到细的方式,从低分辨率(LR)热图和降质特征出发,逐渐恢复出更精确的人体关节位置。在训练过程中,SR head用于监督每个阶段的中间特征,帮助模型更好地学习和优化,降低了高分辨率热图训练的复杂度。 此外,SR head的设计具有轻量级和通用性,无论是自上而下的方法(从全局图像信息开始预测关节位置)还是自下而上的方法(从局部特征开始逐渐构建全身结构),都能很好地适应。实验结果表明,SRPose在COCO、MPII和Crowd-Pose等标准数据集上超越了现有的基于热图的方法,证明了其在人体姿态估计领域的优越性。 这项工作展示了超分辨率技术在解决基于热图的人体姿态估计方法中量化误差问题上的潜力。通过轻量级的SR head设计和逐步恢复策略,模型能够在保持高效的同时提升姿态估计的准确性。这一研究为未来的人体姿态估计技术发展提供了新的思路和方向,有望在实际应用中实现更准确、更快速的人体姿态识别。
2025-04-27 17:56:11 840KB 人体姿态估计
1
在计算机视觉领域,目标检测、实例分割和人体姿态估计是三个关键的技术,它们在自动驾驶、监控分析、视频处理等应用场景中发挥着重要作用。基于yolov8的框架,我们可以实现这些功能并进行高效的实时处理。这里我们将深入探讨这些知识点。 **一、目标检测** 目标检测(Object Detection)是计算机视觉的基础任务之一,旨在识别图像中的物体并确定其位置。YOLO(You Only Look Once)系列是快速目标检测算法的代表,由Joseph Redmon等人提出。YOLOv8是对前几代YOLO的改进版本,它可能包括更优化的网络结构、更快的推理速度以及更高的检测精度。YOLOv8通过将图像划分为网格,并预测每个网格中的边界框和类别概率,来实现对多个目标的同时检测。 **二、实例分割** 实例分割(Instance Segmentation)是目标检测的进一步扩展,它不仅指出图像中有哪些物体,还能区分同一类别的不同物体。在YOLOv8的基础上,可能采用了Mask R-CNN或其他实例分割技术,对每个检测到的目标提供像素级别的分割掩模,从而实现精确到个体的分割。 **三、人体姿态估计** 人体姿态估计(Human Pose Estimation)是指识别图像或视频中人物的关键关节位置,如肩、肘、膝等。这一任务在运动分析、动作识别等领域具有广泛应用。结合YOLOv8的检测能力,可以先定位人物,然后利用专门的人体姿态估计算法(如OpenPose或者HRNet)来估计各个关节的位置。 **四、目标跟踪** 目标跟踪(Object Tracking)是指在连续的视频帧中,一旦发现目标,就持续追踪其运动轨迹。在YOLOv8的基础上,可能会集成如BoTSORT或ByteTrack这样的跟踪算法。这些跟踪器能够跨帧关联检测到的物体,保持对目标的连续追踪,即使目标暂时被遮挡也能恢复跟踪。 **五、RTSP视频源** RTSP(Real Time Streaming Protocol)是一种用于流媒体传输的协议,常用于实时视频流的处理。在YOLOv8的应用场景中,通过RTSP输入视频源,使得系统可以直接处理来自网络摄像头或者其他实时视频流的数据,实现对实时视频的检测、分割和跟踪。 总结来说,基于YOLOv8的系统集成了目标检测、实例分割、人体姿态估计和目标跟踪四大核心功能,支持RTSP视频源,这使得它能够广泛应用于安全监控、智能交通、体育分析等多个领域。提供的代码和模型使得用户可以快速部署和应用这些技术,无需从零开始构建整个系统。通过深入理解这些技术,开发者和研究人员能够在实际项目中实现更加智能和精准的视觉分析。
2025-04-21 14:39:53 79.34MB 目标检测 实例分割 人体姿态 目标跟踪
1
这是人体关键点检测(人体姿态估计)Android Demo App,更多项目请参考: 人体关键点检测1:人体姿势估计数据集(含下载链接) https://blog.csdn.net/guyuealian/article/details/134703548 人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码和数据集 https://blog.csdn.net/guyuealian/article/details/134837816 人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797 人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797
2024-07-02 20:45:17 41.56MB android 人体关键点检测 人体姿态估计
1
Android人体检测和人体关键点检测APP,支持CPU多线程和GPU加速,可实时检测(这是 Demo APP),原文请参考《2D Pose人体关键点实时检测(Python/Android /C++ Demo)》https://panjinquan.blog.csdn.net/article/details/115765863
2024-01-02 17:16:16 106.32MB 人体关键点 人体姿态估计
1
MATLAB课题: 人体行为姿态识别
2023-05-03 10:51:35 8.7MB matlab 人体姿态识别 GUI
1
本设计将基于OpenCV,采用“关键点提取并归一化”与“分类器”相结合的方式,实现多人正常和异常姿态识别的设计。关键词 OpenCV 人体姿态估计 多分类 行为识别;主要功能是通过MoveNet对前期用于训练的视频内容进行人体骨骼关键点信息的提取,MoveNet将在每帧上将人体骨骼关键点的x和y坐标提取出来,通过一定的算法进行归一化,并保存数据。首先,通过OpenCV将视频读取,通过OpenCV进行简单的视频预处理,进行BGR转RGB的操作,然后加载MoveNet的关键点模型将人体骨骼关键点信息提取出来,对每帧的x和y的坐标进行归一化,将不同大小的骨骼标准化,按帧存入数据库中,这个过程将按WALK、STAND、FALL、FIGHT这四类动作分别进行提取与处理。主要功能对前期数据库内容进行数据分割,生成4个LSTM模型,对分割好的数据进行导入,并和导入对应标签进行迭代训练,最后生成Loss值最低的模型。主要功能对前期数据库内容进行数据分割,生成4个LSTM模型,对分割好的数据进行导入,并和导入对应标签进行迭代训练,最后生成Loss值最低的模型。
2023-03-14 10:33:01 794.28MB opencv LSTM 人体姿态估计 神经网络
1
基于matlab设计:人体异常姿态行为检测[GUI界面,万字文档]
2023-03-13 15:49:45 8.75MB 人体姿态检测 系统 matlab
1
人的姿态检测,尤其是老年人的行为监护,比如站,坐,躺,以及摔倒等。
2023-03-06 14:54:01 84.77MB openpose 姿态检测 深度学习 摔倒检测
1
人体姿态估计hrnet转onnx后的模型,精确度和转换之前的pytorch模型验证丝毫没有下降。
2023-03-02 16:30:21 108.84MB onnx pytorch hrnet 人体姿态估计
1