交通数据集来源于PeMS网站,包含圣贝纳迪诺市(美国加利福尼亚州南部一座城市)8条高速公路1979个探测器,2016年7月1日至2016年8月31日这2个月的数据。这些传感器每5分钟收集一次数据,包含1979个所有的传感器每5分钟经过的车辆数。 数据集 节点 特征数 时长 时间窗口 PeMSD8 107 3 61天 5min 此外本数据集还包含一个3*107的邻接矩阵文件,该数据表示了107个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:13:20 17.45MB 数据集 数据挖掘 交通预测 深度学习
1
交通数据集来源于PeMS网站,包含旧金山湾区(美国加尼福尼亚州旧金山大湾区)29条高速公路3848个探测器,2018年1月1日至2018年2月28日这2个月的数据。这些传感器每5分钟收集一次数据,包含3848个所有的传感器每5分钟经过的车辆数。 数据集 节点 特征数 时长 时间窗口 PeMSD4 307 3 59天 5min 此外本数据集还包含一个307*307的邻接矩阵文件,该数据表示了307个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:12:25 31.14MB 数据集 数据挖掘 交通预测 深度学习
1
PEMS 数据集是由美国加利福尼亚州的交通部门联合其他伙伴机构建立的统一公开交通数据库。美国加利福尼亚州的交通部门在交通路网上大约设置了超过39000 个交通监测站,交通管理部门安装在路网上的各类传感器可以实时地收集所在高速公路上的交通状况信息,越是接近市区人口密集的地区,传感器布置的也越密集,从分布上来看,这些传感器大多被安置在靠近市区的路段上。PEMS提供了超过十年的历史交通状况数据,整合了有关加州运输公司以及其他交通机构系统的各类信息。 PemsD7 交通数据集:数据由分布在加利福尼亚州高速公路系统(CalTrans)中选择 228 个站点数据。数据集从30 秒的数据样本聚合到5 分钟的时间间隔内。时间范围在 2012 年5 月和6 月的工作日的228 个站点交通速度信息,数据包括邻接矩阵和特征矩阵。 邻接矩阵是通过分析已有时空交通数据的特性,构建一种新的具有相似交通流量模式的 矩阵,特征矩阵是每个传感器节点的时间序列特征矩阵。
2024-06-24 10:18:24 40.78MB 深度学习 交通预测 数据挖掘 交通网络
1
PEMS 数据集是由美国加利福尼亚州的交通部门联合其他伙伴机构建立的统一公开交通数据库。美国加利福尼亚州的交通部门在交通路网上大约设置了超过39000 个交通监测站,交通管理部门安装在路网上的各类传感器可以实时地收集所在高速公路上的交通状况信息,越是接近市区人口密集的地区,传感器布置的也越密集,从分布上来看,这些传感器大多被安置在靠近市区的路段上。PEMS提供了超过十年的历史交通状况数据,整合了有关加州运输公司以及其他交通机构系统的各类信息。 PemsD3 交通数据集:数据由分布在加利福尼亚州高速公路系统(CalTrans)中选择 228 个站点数据。数据集从30 秒的数据样本聚合到5 分钟的时间间隔内。时间范围在 2012 年5 月和6 月的工作日的228 个站点交通速度信息,数据包括邻接矩阵和特征矩阵。 邻接矩阵是通过分析已有时空交通数据的特性,构建一种新的具有相似交通流量模式的 矩阵,特征矩阵是每个传感器节点的时间序列特征矩阵。
2024-05-12 15:41:48 14.68MB 深度学习 数据挖掘 交通预测 交通网络
1
深圳公路交通数据集,可以用来机器学习预测交通数据流量
2023-04-22 16:26:47 24.71MB 公路交通
1
2017美国NHTS数据
2023-04-10 17:28:18 72.8MB 2017美国交通数据集2017美
1
1.实拍交通标志已标注数据集1万张——内含txt版本。 2.本数据集含有45类标志,有关联ID。 3.数据集适合yolo系统算法使用,内部已经把txt信息都转换好了,看个人需求使用。 4.数据集多为实拍,精度够,并且本人亲自训练过后,检测精度可以达到98%(50轮)。 有需要指导可私信博主;包含深度学习框架和训练好的文件分享 采集的真实场景的数据,标注后可以用于交通标志物检测 手工标注范围良好,适合高精度目标识别 可以直接用于YOLO系列的交通灯目标检测检测;数据场景丰富
原始数据,需要进行筛选得到不同地点的数据集(us101,i80,LankershimBoulveard,PeachtreeStreest,其中前两个为高速公路上收集的数据,后两个为城市道路收集的数据),相较于HighD数据,NGSIM数据不易用于分析换道行为,因为NGSIM没有记录换道的车道的前后车id信息,需要自己筛选。
2022-11-03 15:45:37 217.79MB NGSIM 轨迹分析 交通数据集
1
加州高速路网PeMS交通流量数据集,包含PEMS03、PEMS04、PEMS07和PEMS08的邻接权重和车流量数据。
2022-06-04 11:20:10 104.05MB PeMS 交通数据集
该数据集下载于https://aineistot.vayla.fi/lam/rawdata/2018/01 https://aineistot.liikennevirasto.fi/lam/rawdata/[year]/[ELY]/lamraw_[lam_id]_[yearshort]_[day_number].csv 属于芬兰交通系统数据 文件内容为lamraw_1_20_1到lamraw_6_20_110。只有rawdata\2020\01里面有文件
2021-11-03 18:24:55 163.34MB 部分数据
1