本文主要运用非线性预测算法及数据处理相关知识,以矿石加工质量控制问题为研究对象,综合运用线性插值、BP神经网络和数据离散化等方法对问题给出求解的过程和结果。
本文针对火灾报警系统问题,建立熵权-topsis 逻辑回归等数学模型,旨在通过所建模型来选取可靠的探测器、提高报警准确率及改进各辖区综合管理水平,从而减少我国火灾事故。 针对问题一,首先根据地址、机号和回路,确定真实火灾数为418起。接着根据题目要求,基于可靠性和故障率两个指标建立综合评价模型。由于可靠性为效益型指标,而故障率为成本型指标,故将故障率通过数学公式转换为效益型指标,即完善率。指标确定后,运用熵权法确定各指标权重,最后利用topsis法构建各类型部件评价模型,对16种部件进行综合评价,帮助政府选择最可靠的5种火灾探测器类型,分别为光束感烟、手动报警按钮、智能光电探头、点型感温探测器、线性光束感烟。 针对问题二,建立基于logistic回归的区域报警部件类型智能研判模型。本文选择故障次数、消防大队及探测器类型3个变量作为自变量,误报与否作为因变量,将消防大队和探测器类型两个无序分类变量变为虚拟变量,利用logistic 回归模型预测辖区内某类型部件发出报警信息正确的概率,经检验模型的真实性为 。经检验结果有所偏差,故进行模型优化用woe值代替原值计算,使得结果更加真实可靠。
2022-09-01 19:10:44 291KB 数学建模
1
目前对矿石加工的质量要求越来越高,因此需要在加工过程中对其进行质量测试,保证加工质量的准确度[1]。本文主要运用非线性预测算法及数据处理相关知识,以矿石加工质量控制问题为研究对象,综合运用线性插值、BP神经网络和数据离散化等方法对问题给出求解的过程和结果。 针对问题一,首先根据实际情况使用删除法或线性插值法对数据进行预处理。经过皮尔逊相关系数分析,计算指标A、B、C、D之间的相关性,根据计算结果所得的相关系数表可知,各指标之间不具有显著相关性。根据附件1中所给的数据以及对数据的处理结果,以系统调温区间的平均温度作为基数据,将产品质量和原矿参数按照基数据划分,得出产品质量、温度、原矿参数之间的一一对应关系。选择BP神经网络模型,以系统温度、原矿参数作为输入数据,产品质量作为输出数据,训练神经网络,得到系统温度、原矿参数和产品质量之间的关系。根据题目所给2022-01-23两组系统温度,选择当天原矿参数输入神经网络,输出产品质量结果。 针对问题二,同样采用BP神经网络模型。以原矿参数和产品质量为输入数据,系统温度为输出数据,训练神经网络,得到系统温度与原矿参数、产品质量的关系,根据问题2所
2022-08-12 09:04:01 861KB 数学建模 五一杯
1
2022年五一数学建模联赛B题成品,自己做的参赛论文,代码数据都在,有任何问题可以咨询我,可以学习参考和作业使用。原创成品欲购从速
2021五一杯数学建模竞赛,B题消费救援,三等奖
2021-08-22 18:00:30 5.85MB 五一杯
1