基于深度强化学习的云工作流调度 有向无环图,工作流,深度强化学习,图神经网络; 蒙特卡洛树搜索
python本科毕业设计《基于深度强化学习的云工作流调度》。关键词:有向无环图,工作流,深度强化学习,图神经网络; 蒙特卡洛树搜索python本科毕业设计《基于深度强化学习的云工作流调度》。关键词:有向无环图,工作流,深度强化学习,图神经网络; 蒙特卡洛树搜索python本科毕业设计《基于深度强化学习的云工作流调度》。关键词:有向无环图,工作流,深度强化学习,图神经网络; 蒙特卡洛树搜索python本科毕业设计《基于深度强化学习的云工作流调度》。关键词:有向无环图,工作流,深度强化学习,图神经网络; 蒙特卡洛树搜索python本科毕业设计《基于深度强化学习的云工作流调度》。关键词:有向无环图,工作流,深度强化学习,图神经网络; 蒙特卡洛树搜索python本科毕业设计《基于深度强化学习的云工作流调度》。关键词:有向无环图,工作流,深度强化学习,图神经网络; 蒙特卡洛树搜索python本科毕业设计《基于深度强化学习的云工作流调度》。关键词:有向无环图,工作流,深度强化学习,图神经网络; 蒙特卡洛树搜索python本科毕业设计《基于深度强化学习的云工作流调度》。关键词:有向无环图,工作流,深
基于强化学习的云工作流调度算法
2022-03-15 22:29:46 79KB 研究论文
1
满足帕累托最优的多目标云工作流调度算法.pdf
2021-11-26 09:03:51 6.31MB 算法 调度算法 数据结构 参考文献
针对目前云计算服务中用户体验的要求不断提高,工作流业务繁多且复杂的现状,本文为了改善工作流中各子任务执行效率不平均以及计算资源利用率低的问题,通过云工作流仿真环境,结合群体智能优化算法理论,根据科学工作流模型,创建任务集合,提出一种改进粒子群优化算法(PSO)用以优化工作流中任务调度策略,并进行仿真。仿真结果表明,本文提出的改进粒子群优化算法,与模拟退火粒子群优化算法(SA-PSO)对比,特别在面对云工作流节点多而复杂的情况时,执行成本可以减少20%,调度效果更好。
1
针对云工作流调度问题面临的安全威胁,首先采用云模型量化任务与虚拟机资源的安全性,通过安全云相似度衡量用户对任务所分配虚拟机资源的安全满意程度;然后建立考虑安全性、完成时间和使用费用的云工作流调度模型,并提出基于离散粒子群优化的云工作流调度算法;最后对所提算法进行仿真实验。实验结果表明,与同类算法相比,该算法在安全效用值、完成时间、使用费用和负载均衡离差方面具有较好的性能表现。
1