本项目是一个结合了公开数据集、BCI竞赛数据集,并运用SVM(支持向量机)与CSP(共空间模式)技术进行运动想象二分类的演示程序。在脑-机接口(BCI)领域,CSP算法是一种常用的技术,它可以增强与特定脑电图(EEG)模式相关的信息,同时抑制不相关的信号,因此,在运动想象等分类任务中,CSP技术可以显著提高分类器的性能。 SVM是一种经典的监督学习方法,广泛用于解决分类和回归问题,尤其在模式识别领域表现突出。SVM的核心思想是寻找一个最优的超平面,以最大化不同类别数据点之间的边界。结合CSP预处理步骤,SVM可以更有效地处理BCI竞赛数据集中的运动想象任务。 运动想象(MI)是BCI系统中的一种脑电信号模式,用户通过想象自己的肢体运动来产生特定的脑电模式。在二分类任务中,通常将运动想象的任务分为两种,比如想象左手或右手的运动。这种二分类问题对于评估BCI系统的性能至关重要。 本demo的目的是通过展示如何处理公开的BCI数据集来演示SVM-CSP方法在运动想象任务中的应用。它为研究人员提供了一个可供学习和比较的参考模型,同时也方便了学术交流和算法验证。 为了构建这样的分类系统,通常会经过数据预处理、特征提取、分类器设计和验证等步骤。数据预处理包括滤波、去除伪迹等,以提高信号的质量。特征提取阶段则会应用CSP算法来增强与运动想象相关的特征。分类器设计则是基于SVM算法来构建模型,并通过交叉验证等方法来优化参数,以达到最佳分类效果。系统会在测试集上进行验证,评估其在真实场景中的应用潜力。 在实际应用中,BCI系统面临诸多挑战,比如信号的非平稳性、个体差异大、环境噪声干扰等。本demo提供了一种解决方案,展示了如何通过技术手段克服这些问题,实现高效的运动想象识别。 本项目不仅是一个演示程序,更是一个具有实际应用价值的BCI研究工具。它结合了最新的数据集和先进的算法,提供了一个完整的框架来帮助研究者快速搭建起自己的BCI分类系统,并在该平台上进行进一步的创新和优化。
2025-04-03 13:22:11 16.72MB
1
银行卡电信诈骗危险预测 一、包含以下实验: 使用机器学习算法(包含三个算法,分别为KNN、决策树、集成学习bagging),实现银行电信诈骗数据集实现二分类任务; 二、包含一个课程汇报PPT: 1、数据集介绍; 2、算法介绍; 3、实验步骤(包含数据分析探索+模型建立+融合模型); 4、实验结果及分析; 运行平台:jupyter; 二分类准确率(acc)都是99%以上,对于小白上手学习机器学习,是一个非常不错的练手项目;对于正在上数据分析、数据挖掘、机器学习课程的同学来说,这也是一个非常不错的汇报项目,可以直接拿里面的课程ppt进行汇报;
2025-03-28 17:30:57 80.05MB 机器学习 课程资源 数据集
1
案例系列:美国人口普查_预测收入超过50K_TabTransformer二分类 本示例演示了如何使用进行结构化数据分类,TabTransformer是一种用于监督和半监督学习的深度表格数据建模架构。TabTransformer基于自注意力的Transformer构建而成。Transformer层将分类特征的嵌入转换为强大的上下文嵌入,以实现更高的预测准确性。在这里,我们定义数据集的元数据,这些元数据对于读取和解析数据为输入特征以及根据其类型对输入特征进行编码非常有用。# 数值特征的名称列表"age", # 年龄"education_num", # 受教育年限。
2024-05-03 13:39:37 28KB transformer
1
基于CNN的二分类识别,采用的是python+tensorflow框架,识别准确率和验证准确率均90%以上,非常好用。
2024-04-13 18:41:39 301.16MB tensorflow tensorflow
1
基于注意力机制attention结合门控循环单元GRU分类预测,GRU-Attention分类预测。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-02-23 20:04:18 74KB
1
最近 Transformer 在统一建模方面表现出了很大的威力,是否可以将Transformer应用到时序异常检测上引起了很多学者的研究兴趣。 最近来自阿里达摩院、上海交通大学的几位学者就近年来针对时间序列场景中的Transformer模型进行了汇总,在Arxiv上发表了一篇综述。综述涵盖了Transformer针对时序问题下的具体设计,包含预测、异常检测、分类等诸多工业界常用场景,并开源了代码,是非常不错的学习资料。 优秀毕业设计:基于transformer的序列数据二分类完整代码+数据可直接运行
2024-01-15 18:12:59 492KB 毕业设计 transformer
1
鹈鹕算法(POA)优化最小二乘支持向量机分类预测,POA-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 20:19:57 87KB 支持向量机
1
鲸鱼算法(WOA)优化最小二乘支持向量机分类预测,WOA-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 20:19:42 87KB 支持向量机
1
灰狼算法(GWO)优化最小二乘支持向量机分类预测,GWO-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 14:43:02 88KB 支持向量机
1
麻雀算法(SSA)优化最小二乘支持向量机分类预测,SSA-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-07 13:30:14 87KB 支持向量机
1