使用方法:运行main.py文件即可,或者命令行输入"python main.py"。
1
乳腺癌数据集二分类_乳腺癌数据集
2023-02-28 09:17:51 346KB 数据集
1
乳腺癌数据集 Python 预测模型 乳腺癌数据集二分类预测 机器学习 深度学习 网格搜索+logistic逻辑回归+神经网络+SVM支持向量机+KNN 条形图折线图可视化 预测效果较好,拟合较为准确。 jupyter notebook numpy pandas matplotlib sklearn 数据分析 数据挖掘
1
MATLAB 神经网络43个案例分析各章节的仿真数据集 仿真示例需调用到的dat类数据等等 有需要的根据自己的实际章节取用 不包含源码,如乳腺癌数据等
1
乳腺癌数据集
2022-11-29 14:32:17 2.9MB python
1
基于SVM的乳腺癌数据集分类的设计与实现.doc基于SVM的乳腺癌数据集分类的设计与实现.doc基于SVM的乳腺癌数据集分类的设计与实现.doc
2022-10-19 12:05:26 556KB 基于SVM的乳腺癌数据集分类的设
1
神经网络 乳腺癌数据集的神经网络,可产生概率并对新患者进行分类。 训练数据 该模型是使用699例乳腺癌患者的数据集构建的。 数据集经过归一化和清洗,最终使500名患者接受了培训和测试的最终数据集。 共有500例患者,其中262例(52.4%)患有良性肿瘤,238例(47.6%)患有恶性肿瘤。 为了进行训练,使用了80%的数据,其中40%是良性肿瘤,40%是恶性肿瘤,其余20%用于测试。 在这20%中,12.4%来自良性肿瘤,而7.6%来自恶性肿瘤。 怎么跑 克隆存储库 启动你的服务器 现在,您可以访问神经网络预测的结果并查看模型训练的性能图。 内容
2022-10-17 19:59:16 8KB neural-network breast-cancer JavaScript
1
WBPC康纳斯星州乳腺癌数据集,包括诊断数据集与预后诊断数据集,源数据,可以作为KNN、SVM等机器学习的练习数据使用
2022-10-04 15:34:08 59KB WBPC 数据集 SVM 机器学习分类
1
kMeans_PCA 在sklearn乳腺癌数据集上包含k-Means和PCA的原始代码
2021-12-21 14:00:30 97KB JupyterNotebook
1
决策树 对新患者进行分类的乳腺癌数据集的决策树。 训练数据 该模型是使用699例乳腺癌患者的数据集构建的。 数据集经过归一化和清洗,最终使500名患者接受了培训和测试的最终数据集。 共有500例患者,其中262例(52.4%)患有良性肿瘤,238例(47.6%)患有恶性肿瘤。 为了进行训练,使用了80%的数据,其中40%是良性肿瘤,40%是恶性肿瘤,其余20%用于测试。 在这20%中,12.4%来自良性肿瘤,而7.6%来自恶性肿瘤。 怎么跑 克隆存储库 启动你的服务器 现在,您可以从“决策树”中访问预测结果。 要查看命中率,请inspecionar并检查console 。 注释 src目录中的decision-tree.js文件已从以下存储库中删除,该存储库允许使用和修改: :
1