概述 该数据集包含 3,383 张专注于乳腺肿瘤的乳腺 X 线照片图像,以文件夹结构进行注释。 该数据集是从计算机视觉项目平台 Roboflow 导出的。 它非常适合构建和测试旨在通过乳腺 X 光检查检测乳腺肿瘤的深度学习模型。 预处理 对图像应用了以下预处理步骤: 像素数据的自动方向(EXIF 方向剥离) 调整为 640x640 像素 用法 此数据集可用于各种计算机视觉任务,包括: 乳腺肿瘤检测和分类 用于医学成像 的深度学习模型的训练 医疗保健和医学诊断研究 乳腺癌作为全球女性健康的主要威胁之一,其早期检测与诊断对于改善预后至关重要。随着计算机视觉和深度学习技术的发展,利用图像识别技术辅助乳腺癌诊断已成为研究的热点。本数据集的发布,为医学影像分析领域的研究者提供了一个宝贵的资源,旨在通过使用深度学习模型来提高乳腺肿瘤的检测准确性。 该数据集共包含3,383张乳腺X线摄影图像,这些图像专注于乳腺肿瘤区域,能够为研究者提供丰富的图像素材以构建和测试模型。数据集的导出平台Roboflow,是一个流行的计算机视觉项目平台,它提供了将数据集导出为各种格式的功能,从而便于研究者在不同的框架和环境下使用。 在预处理方面,对图像进行了几个关键步骤,包括自动方向调整和尺寸标准化。自动方向调整主要是去除图像的EXIF方向标签,确保图像在不同的设备和软件上都能正确显示。尺寸标准化至640x640像素,则是为了满足深度学习模型对输入图像尺寸的要求,有助于提高模型训练的一致性和效率。 数据集的使用场景广泛,适用于多种计算机视觉任务,尤其在乳腺肿瘤检测和分类方面表现出色。通过该数据集训练的深度学习模型,可以应用于医学成像领域,帮助放射科医生更快更准确地识别乳腺癌的征象。此外,该数据集也可用于医疗保健和医学诊断研究,支持对乳腺癌的早期发现和治疗决策研究。 在深度学习和医学影像分析的研究中,训练数据集的质量直接影响模型的性能。高质量的标注是训练准确模型的基础。本数据集采用了文件夹结构进行注释,这意味着每张图像被分到不同的文件夹中,文件夹的名称可能代表了图像的具体信息,如肿瘤类型、患者信息等,这有助于研究者根据不同的需求筛选和使用数据。 数据集被划分为训练集(train)、验证集(valid)和测试集(test),这样的划分可以确保模型在训练过程中,通过验证集不断调整参数,最终在独立的测试集上评估模型的泛化能力。这种划分方式符合机器学习项目中常见的实践,有助于研究者更客观地评估模型在实际应用中的性能。 该乳腺癌数据集不仅为开发和评估乳腺癌检测技术提供了丰富的图像资源,还通过预处理和结构化的方式,支持了深度学习模型的训练和测试,是医学影像分析领域的重要贡献。随着技术的不断进步,这些深度学习模型有望在未来成为医学诊断的有力辅助工具,从而提高乳腺癌的诊断水平,挽救更多女性的生命。
2025-10-15 14:40:20 87.24MB 深度学习 乳腺癌数据集
1
使用方法:运行main.py文件即可,或者命令行输入"python main.py"。
1
乳腺癌数据集二分类_乳腺癌数据集
2023-02-28 09:17:51 346KB 数据集
1
乳腺癌数据集 Python 预测模型 乳腺癌数据集二分类预测 机器学习 深度学习 网格搜索+logistic逻辑回归+神经网络+SVM支持向量机+KNN 条形图折线图可视化 预测效果较好,拟合较为准确。 jupyter notebook numpy pandas matplotlib sklearn 数据分析 数据挖掘
1
MATLAB 神经网络43个案例分析各章节的仿真数据集 仿真示例需调用到的dat类数据等等 有需要的根据自己的实际章节取用 不包含源码,如乳腺癌数据等
1
乳腺癌数据集
2022-11-29 14:32:17 2.9MB python
1
基于SVM的乳腺癌数据集分类的设计与实现.doc基于SVM的乳腺癌数据集分类的设计与实现.doc基于SVM的乳腺癌数据集分类的设计与实现.doc
2022-10-19 12:05:26 556KB 基于SVM的乳腺癌数据集分类的设
1
神经网络 乳腺癌数据集的神经网络,可产生概率并对新患者进行分类。 训练数据 该模型是使用699例乳腺癌患者的数据集构建的。 数据集经过归一化和清洗,最终使500名患者接受了培训和测试的最终数据集。 共有500例患者,其中262例(52.4%)患有良性肿瘤,238例(47.6%)患有恶性肿瘤。 为了进行训练,使用了80%的数据,其中40%是良性肿瘤,40%是恶性肿瘤,其余20%用于测试。 在这20%中,12.4%来自良性肿瘤,而7.6%来自恶性肿瘤。 怎么跑 克隆存储库 启动你的服务器 现在,您可以访问神经网络预测的结果并查看模型训练的性能图。 内容
2022-10-17 19:59:16 8KB neural-network breast-cancer JavaScript
1
WBPC康纳斯星州乳腺癌数据集,包括诊断数据集与预后诊断数据集,源数据,可以作为KNN、SVM等机器学习的练习数据使用
2022-10-04 15:34:08 59KB WBPC 数据集 SVM 机器学习分类
1
kMeans_PCA 在sklearn乳腺癌数据集上包含k-Means和PCA的原始代码
2021-12-21 14:00:30 97KB JupyterNotebook
1