DMRG算法 一维量子多体系统的主成分分析 此存储库包含密度矩阵重新归一化组或MATLAB中的示例代码,该示例代码使用类似于统计来研究一维量子多体系统的低能物理学。 该代码的组织方式如下: OBCdmrg:在开放边界条件下实现基态DMRG(在零温度下)。 t-dmrg:在零温度下实现时间相关的DMRG。 LowTdmrg:将t-dmrg扩展到假想时间的演变过程,以研究有限温度物理学。
2025-05-14 12:49:51 74.69MB MATLAB
1
本文先介绍了人脸识别的相关理论,说明了人脸识别在身份识别中的优势和重要地位,然后介绍了人脸识别的相关理论包括主成分分析、多为空间距离等;然后对人脸识别算法进行设计和实验,人脸识别的核心工作包括两个部分,一是人脸的特征表示,通过图像预处理(包括图像去噪、图像几何归一化、图像灰度归一化等处理步骤),可以使用基于主成分的方法对图像进行降维处理;二是利用主成分分析得到的子空间基向量,可以将人脸图像预处理之后的结果嵌入到子空间,并将测试人脸嵌入到子空间,利用欧式距离计算测试样本与其他欧式点的距离,并选择距离最小的人脸的分类作为识别结果。实验结果表明,基于PCA的人脸特征和人脸识别有很高识别度。
2025-03-30 17:25:54 313KB
1
核主元分析KPCA,主要用于数据降维。核主成分分析(Kernel Principal Component Analysis, KPCA)方法是PCA方法的改进,从名字上也可以很容易看出,不同之处就在于“核”。使用核函数的目的:用以构造复杂的非线性分类器。
2024-09-10 11:35:14 209KB 特征降维
1
对数据进行主成分分析PCA,将主成分进行RBF神经网络预测拟合,MATLAB源代码。
2024-06-28 16:28:44 1KB 主成分分析PCA MATLAB源代码
1
实验内容: 1)下载人脸识别数据库; 2)测试主成分分析PCA算法分类精度; 3)编写、运行程序并查看结果; 4)调节参数主成分分析PCA算法相关参数,分析其对模型效果的影响。
2024-05-10 21:28:06 750KB 机器学习
1
一、实验目的 1、复习主成分分析的原理和算法 2、使用sklearn库函数实现对鸢尾花数据集的主成分分析,观察主成分分析的作用 3、(选做)解读基于主成分分析和支持向量机的人脸识别程序 二、实验步骤 1、导入鸢尾花数据集,查看数据分布情况: 选取三个特征查看数据分布情况 选取两个特征查看数据分布情况 2、使用主成分分析函数对鸢尾花数据集降维 3、对降维后的数据集和原始数据集分别进行线性判别分析,比较分析的准确率 4、(选做)使用数值计算方法实现步骤2,深入了解主成分分析的实现过程 三、实验结果与讨论 1、简单清楚的叙述主成分分析的过程 2、绘制人脸识别程序的流程框图
2024-04-17 17:37:14 1.45MB python 数据集 主成分分析 人脸识别
1
pca主成分分析 PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf
2024-03-04 19:53:51 404KB 人工智能
1
matlab的PCA主成分分析代码
2024-02-23 11:49:03 32KB matlab
1
主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型。 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型
2024-02-02 19:52:52 29KB 神经网络 matlab
1
棉花产量和纤维质量参数取决于作物生长的环境。 推荐作物基因型的主要挑战是基因型×环境相互作用。 鉴定具有高适应性和稳定性的品种是应对这一挑战的最佳方法之一。 研究了陆地棉基因型×环境互作。 十个基因型以三个重复重复的完全随机区组设计种植。 对收集到的数据以基因型和位置为因子进行方差分析(ANOVA)。 将变异的标准分析与主成分分析相结合的加性主效应和乘性相互作用模型用于研究基因型主效应,环境主效应和GE相互作用。 在皮棉产量,铃重,主食长度和种子等级模糊方面存在显着的基因型×环境相互作用。 在种子棉总产量上没有显着的品种×部位相互作用。 棉花品种对不同生长条件的反应不同,这意味着必须针对特定的生产条件正确选择种植者的品种,以避免因基因型×环境相互作用而造成的损失。
2024-01-14 20:24:45 653KB 通用电气 主成分分析
1