基于拉丁超立方采样的k-means算法改进:风电光伏场景缩减与不确定性模拟,基于拉丁超立方场景生成和改进k-means算法的场景缩减 风电、光伏场景不确定性模拟,由一组确定性的方案,生成1000种光伏场景,为了避免大规模风电,光伏场景造成的计算困难问题,针对k-means的初始聚类中心随的问题做出改进,并将场景削减至5个,运行后直接给出生成的场景、缩减后的场景及缩减后各场景概率。 可移植以及可应用性非常强 适合初学者进行学习使用程序注释清晰易懂 ,基于拉丁超立方场景生成; 改进k-means算法; 场景缩减; 风电、光伏场景不确定性模拟; 生成光伏场景; 避免计算困难; 初始聚类中心改进; 场景削减; 注释清晰易懂。,基于拉丁超立方与改进k-means的场景缩减算法:风电光伏不确定性模拟
2025-04-18 11:51:40 173KB 开发语言
1
基于蒙特卡洛模拟的电力系统潮流计算与风光出力不确定性分析,基于蒙特卡洛仿真的电力系统IEEE33节点潮流计算与网损分析:不确定性风光出力的电压和功率影响探究,基于蒙特卡洛概率潮流计算 在IEEE33节点系统中,由于风光出力的不确定性,利用蒙特卡洛生成风速和光照强度得到出力,可得到每个节点的电压和支路功率变化,网损和光照强度。 这段程序主要是进行电力系统潮流计算和蒙特卡洛仿真。下面我会对程序进行详细的分析和解释。 首先,程序开始时进行了一些初始化操作,包括清除变量、定义一些常量和参数。 接下来,程序定义了一个函数`IEEE33`,该函数用于进行33节点电力系统的潮流计算。函数的输入参数是光伏发电功率、风电出力功率、负荷有功功率和负荷无功功率。函数的输出是节点电压和网损。 在主程序中,定义了一些变量和参数,包括光伏发电功率、风电出力功率、负荷有功功率和负荷无功功率的样本数量、基准功率、光伏发电相关参数等。 接下来,程序使用蒙特卡洛方法生成光伏发电功率、风电出力功率和负荷功率的样本。光伏发电功率服从Beta分布,风电出力功率服从Weibull分布,负荷功率服从正态分布。 然后,程序
2025-04-13 00:15:33 1.4MB
1
基于二阶自抗扰ADRC和MPC的路径跟踪控制,使用ADRC对前轮转角进行补偿,对车辆的不确定性和外界干扰具有一定抗干扰性,有参考lunwen,Carsim版本为2019,Matlab版本为2021 ,基于二阶自抗扰ADRC; MPC路径跟踪控制; 车辆不确定性抗干扰性; 外界干扰补偿; 参考lunwen; Carsim 2019版本; Matlab 2021版本,基于二阶自抗扰ADRC与MPC的车辆路径跟踪控制研究 在现代汽车电子控制系统中,路径跟踪控制是实现车辆自动驾驶的关键技术之一。随着自动驾驶技术的不断发展,对车辆路径跟踪控制系统的性能要求也愈来愈高,尤其是在面对车辆自身不确定性和复杂多变的外部环境时,如何确保车辆能够准确、稳定地跟踪预定路径成为了一项重要课题。为了提高车辆在真实道路条件下的行驶稳定性和安全性能,研究者们开始探索将二阶自抗扰控制(ADRC)与模型预测控制(MPC)相结合的先进控制策略。 自抗扰控制(ADRC)是一种基于对象动态模型的控制技术,它通过实时估计和补偿系统的不确定性和外部干扰来提高系统的鲁棒性。在路径跟踪控制中,ADRC可以有效地补偿由车辆的动态特性不一致以及复杂外部环境引起的不确定性,从而提高车辆路径跟踪的精确性和稳定性。 模型预测控制(MPC)是一种基于优化控制理论的先进控制策略,它通过预测未来一段时间内系统的动态行为,然后在线求解最优控制序列以实现对系统未来行为的指导。MPC具有良好的处理约束能力和优化多目标问题的能力,适用于处理复杂的路径跟踪任务。 将ADRC和MPC相结合,可以充分发挥两者的优势。ADRC的强鲁棒性能可以处理车辆在复杂环境下的不确定性,而MPC的预测和优化能力则有助于实现对车辆未来路径的精确控制。这种结合使用的方法不仅能够保证车辆在受到不确定性和外部干扰时仍能保持稳定跟踪预定路径,而且还可以在满足各种约束条件的前提下优化车辆的行驶性能。 为了验证和分析所提出的控制策略的实际效果,研究中使用了Carsim软件进行车辆模型的搭建和仿真实验。Carsim作为一个被广泛认可的车辆动力学仿真平台,能够提供精确和高保真的车辆模型和环境模拟。同时,实验中的控制算法实现则是通过Matlab软件及其相应的控制系统工具箱来完成的。Matlab作为一个功能强大的数学计算和仿真平台,为控制算法的开发和测试提供了便利。 在所提供的压缩包文件中,包含了多个与基于二阶自抗扰ADRC和MPC路径跟踪控制相关的文档,这些文档涵盖了研究的引言、车辆稳定性与抗干扰性分析、以及具体的控制策略研究等内容。通过这些文档,研究人员可以深入理解该控制策略的设计理念、实现方法和仿真实验结果,为未来该领域的进一步研究和应用提供了宝贵的资料和参考。 基于二阶自抗扰ADRC和MPC的路径跟踪控制为车辆自动驾驶提供了新的解决方案,它不仅提升了车辆路径跟踪的稳定性和精确性,还增强了系统对外界干扰的抵抗能力。随着相关技术的不断完善和成熟,我们有理由相信,这一控制策略将在未来的自动驾驶技术中扮演重要的角色。
2025-04-06 22:03:34 2MB
1
为解决配电网中分布式光伏最大准入容量的问题,以系统安全运行为约束建立分布式光伏准入容量的鲁棒模型。为了适应新型配电网,协调系统安全性与分布式光伏准入容量之间的矛盾,在评估分布式电源准入容量时考虑包含有有载调压变压器和静止无功补偿装置等主动管理手段的网络拓扑,并建立鲁棒性指标实现不确定区间可调节鲁棒优化。通过鲁棒线性优化方法将不确定模型转化为确定的混合整数线性规划进行求解。以改进的IEEE33节点为例,通过比较本文提出的算法及随机规划算法,验证了本文所建模型的可行性和有效性。
2025-04-04 12:03:45 910KB 分布式光伏 鲁棒优化 不确定性
1
内容概要:本文介绍了如何使用Matlab和Yalmip工具箱构建含风电的电力系统调度模型,以应对源荷不确定性。文章详细讲解了模型中涉及的各种电力组件(如储能、风光机组、火电机组和水电机组)的变量定义及其约束条件。此外,还探讨了目标函数的构建,包括运行成本、弃风弃光成本和碳成本,并阐述了如何通过模糊机会约束处理风光出力的不确定性。最后,文章展示了如何使用Cplex或Gurobi求解器求解该优化问题,并提供了详细的代码示例和结果可视化方法。 适合人群:从事电力系统调度的研究人员和技术人员,熟悉Matlab编程环境并对优化算法有一定了解的人群。 使用场景及目标:适用于需要解决含风电电力系统调度中源荷不确定性问题的实际工程应用。主要目标是在确保系统安全的前提下,降低运行成本,减少弃风弃光现象,并优化碳排放管理。 其他说明:文章不仅提供了完整的代码实现,还深入解析了各个模块的功能和实现细节,便于读者理解和扩展。
2025-03-31 21:05:53 119KB
1
自抗扰控制(ADRC)和滑模控制(SMC)是两种常见的控制策略,分别具有各自的理论基础和应用优势。自抗扰控制是一种非线性鲁棒控制方法,主要用于处理不确定系统的控制问题。滑模控制则以其对系统参数变化和扰动的不敏感性、快速响应和实现简单等特点被广泛研究和应用。在实际工程应用中,不确定性是系统性能分析和控制设计时必须考虑的因素之一。因此,为提高系统的稳定性和鲁棒性,研究人员致力于探索融合这两种控制技术的新方法。 自抗扰控制(ADRC)是1998年由韩京清先生提出的,它基于非线性PID控制原理,并针对不确定性系统进行了改进。ADRC能够在不依赖于精确数学模型的情况下,通过估计和补偿不确定性的扰动,增强控制系统的抗干扰能力。这种控制方法在多个领域得到应用,如电功率转换器系统、发动机系统以及永磁直线电机等。高志强和雷春林等人的研究表明,ADRC在实际应用中能够获得有效的控制性能。 滑模控制(SMC)起源于20世纪50年代,是一种典型的非线性控制策略。SMC的核心在于滑模面设计,通过切换律或趋近律实现系统状态在有限时间内达到滑模面,并在该平面上沿着预定的轨迹移动,从而实现对系统动态行为的精确控制。SMC的主要优点包括对系统参数变化和外部干扰的不敏感性、设计和实现相对简单,以及对系统动态特性的快速响应。 然而,在实际应用过程中,尤其当系统存在参数不确定或时变时,单独使用ADRC或SMC可能无法达到预期的控制效果。因此,研究人员尝试将ADRC和SMC结合起来,提出了自适应滑模控制、模糊滑模控制、神经网络滑模控制等先进控制策略。这些策略综合了两种控制方法的优势,旨在通过切换律和滑模面的设计,进一步提升系统的鲁棒性和适应性。 本文提出的控制方法是在自抗扰控制的基础上,引入滑模控制的滑模面和切换律概念。该方法在自抗扰控制的非线性组合部分采用切换律,增强了系统的抗干扰能力和稳定性。在理论推导和仿真实验中,这种新型的自抗扰控制器通过与传统的PID控制方法对比,证明了其在处理不确定系统问题上的有效性。 研究工作不仅涵盖了控制策略的设计和理论分析,还包括了仿真实验的验证。通过仿真实例,可以观察到带有切换律的自抗扰控制器相较于传统PID控制,在系统的稳定性和抗干扰能力方面表现出明显的优势。这些成果为不确定性系统的控制提供了一种新的视角和可能的解决方案。 总结来说,这项研究展示了如何将滑模控制与自抗扰控制相结合,通过引入切换律,设计出一类新型的自抗扰控制器。该控制器不仅继承了ADRC处理不确定系统的传统优势,还结合了SMC在快速响应和稳定性方面的特性。通过仿真实验的对比分析,验证了新方法在提高系统稳定性和抗干扰能力方面的有效性。这些研究结果对于理论研究者和工程实践者在不确定性系统控制领域都具有一定的参考价值和实际应用意义。
2024-11-22 21:41:28 633KB 研究论文
1
本文提出了一个多阶段随机规划的形式化框架,用于在多地区可再生能源生产不确定性的输电受限经济调度中,重点优化实时运营中的储运调度。该问题通过使用随机对偶动态规划方法来解决。所提出方法的适用性在一个基于2013-2014年德国电力系统太阳能和风能整合水平校准的实际案例研究中得到了证明,考虑了24小时的时间范围和15分钟的时间步长。随机解的价值相对于确定性策略的成本为1.1%,而相对于随机规划策略的完美预测价值为0.8%。分析了各种替代实时调度策略的相对性能,并探讨了结果的敏感性。
1
不确定性量化 基于仿真的可靠性分析 全局灵敏度分析 元建模 随机有限元分析 基于可靠性的优化
2024-05-20 12:38:21 14.08MB 不确定性量化 matlab
tensorflow1.x完成,适应了tensorflow2.x环境,DQN,DDPG,ACTOR-CRITIC等等强化学习卸载方案
2024-05-13 21:17:35 3.76MB 边缘计算
1
% function [y_lb,y_ub]=CI_reg(fun_name,a,b,k,K,Expansion) % 输入% fun_name 被调用的函数名% a 区间输入的下界向量% b 区间输入的上界向量%k CI展开的顺序%K 每个区间变量的扫描(验证)点% 切比雪夫多项式的扩展扩展类型-“完整”或“部分” % 输出y_lb响应下限% % y_ub 响应上限 % 例子%[y_lb1,y_ub1]=CI_reg(@double_pendulum,[0.99 1.98]',[1.01 2.02]',4,10,'full');
2024-04-15 17:56:03 13.37MB matlab
1