三相逆变器单机下垂控制simulink仿真
2024-09-17 00:24:51 48KB 电力电子
1
matlab/simulink 双馈风机调频,风电调频,风火水调频,虚拟惯性控制,下垂控制 参与系统一次调频的Matlab/Simulink模型 系统为三机九节点模型,所有参数已调好且可调,可直接运行,风电渗透率20% 也可研究风火联合,火电调频等。有同步机调速器。 风电调频,IEEE9节点,双馈风机调频,一次调频,火电调频,同步机调频。 同步机部分带有调速器等部分。并网电压电流。 风电附带下垂控制,虚拟惯性控制,风电渗透率20%,有参考文献。也可研究风电并网,并网电压,电流波形
2024-08-20 19:21:47 1.16MB matlab
1
在电力系统领域,直流微电网(DC Microgrid)是一种分布式能源管理系统,它允许多个电源(如太阳能电池板、燃料电池或储能设备)并联运行,为负载提供稳定的电力。本资源是一个基于Simulink的模型,重点在于实现带有电压恢复补偿功能的直流微电网下垂控制策略。 直流微电网的下垂控制(Droop Control)是其核心控制方法之一,它通过牺牲系统内部的电压或频率稳定性来实现功率共享。在没有中央控制器的情况下,各个电源节点通过调整自身的输出电压或电流与系统中的其他节点进行协调,确保整体功率平衡。这种控制策略简单、易于实现,但在电网电压波动时,可能导致电压质量下降。 在该压缩包中的“基于simulink的带有电压恢复补偿功能的直流微电网下垂控制”模型中,作者可能设计了一个包含以下几个关键组成部分的Simulink模型: 1. **电源模型**:模拟不同的分布式能源,如光伏阵列、燃料电池或电池储能系统,这些模型将根据各自的技术特性(如效率、最大功率点跟踪等)响应控制信号。 2. **下垂控制模块**:每个电源节点都包含一个下垂控制单元,该单元会根据设定的电压或电流下垂系数调整输出,以实现功率分配。 3. **电压恢复补偿**:当电网电压下降时,此功能会自动调整电源输出以恢复电压水平。这通常通过附加的控制器实现,该控制器监测电网电压,并根据预设的补偿系数调整下垂控制的设置点。 4. **负载模型**:包括恒定阻抗、恒定功率等不同类型的负载,模拟实际应用中可能遇到的各种情况。 5. **通信模块**:尽管描述中未明确提到,但在实际的分布式系统中,节点间可能需要通信来交换信息。这个模块可以模拟简单的总线通信或者更复杂的网络通信协议。 6. **仿真分析工具**:Simulink模型可能还包括用于分析系统性能的工具,如波形显示、数据记录和性能指标计算等。 通过这个模型,用户可以研究不同下垂控制参数、电压恢复补偿系数以及通信延迟对直流微电网性能的影响。此外,也可以用于测试新的控制算法,以提高系统的稳定性和鲁棒性。对于学习和理解直流微电网控制策略,尤其是下垂控制与电压恢复补偿,这是一个非常有价值的教育资源。
2024-07-08 21:03:32 62KB
1
有功均分,无功因为线路阻抗的原因,导致没有完全均分。
2024-05-28 17:02:09 59KB 电力电子
1
simulink 风电调频,双馈风机调频,VSG虚拟同步机控制,风电场调频,三机九节点,带有虚拟惯性控制,下垂控制。 同步机为火电机组,水轮机,可实现同步机调频,火电调频,水轮机调频等。 风电渗透20%,phasor模型,仿真速度快,只需要20秒
2024-04-17 10:20:31 1.16MB
1
储能控制器,simulink仿真模型。 采用下垂控制实现蓄电池超级电容构成的混合储能功率分配、SOC均衡控制、考虑线路阻抗情况下提高电流分配精度控制、母线电压补控制。
2023-09-12 12:04:57 18KB 储能控制器
1
基于分布式优化的微电网下垂控制
2023-03-31 17:48:48 357KB 研究论文
1
基于simulink孤岛并网微电网下垂控制仿真包括并网与孤岛下垂控制模型仿真以及构建控制器内部结构;下垂控制就是选择与传统发电机相似的频率一次下垂特性曲线作为微源的控制方式,即分别通过 P/f 下垂控制和 Q/V 下垂控制来获取稳定的频率和电压。
2023-03-09 17:24:57 111KB simulink/微电网
1
PQ控制和下垂控制matlab仿真
2023-03-07 18:04:38 189KB matlab simulink pq控制 下垂控制
1
针对孤岛直流微电网需要独自承担系统母线电压稳定和精确的功率分配,提出了含母线电压补偿和负荷功率动态分配的协调控制策略。在主控制层中采用下垂控制来实现分布式电源之间的功率共享;在下垂控制的基础上,提出了考虑电压调节控制和电流矫正控制的分布式二次控制,其对传统下垂控制带来的直流母线电压跌落进行补偿,使得母线电压恢复到额定值;通过对下垂系数的不断调整,达到了负荷功率分配的高精度。最后,利用MATLAB/Simulink对所设计的控制策略在不同运行模式下进行仿真验证,仿真结果表明所提的控制策略可以实现直流微电网的稳定运行和负荷功率的动态分配,且能够满足分布式电源即插即用等要求。
1