在人工智能领域,垃圾短信识别是一个重要的应用方向,旨在通过智能算法识别并过滤掉用户接收到的垃圾短信。随着智能手机的普及,垃圾短信问题日益严重,用户每天都会收到大量无用甚至带有诈骗性质的短信,这些短信不仅打扰人们的正常生活,还可能带来安全隐患。因此,开发一种高准确率的垃圾短信识别模型显得尤为重要。 本项目的核心是一个基于Python语言开发的模型,该模型具有交互界面,能够部署在用户的本地设备上,保证了处理数据的隐私性和安全性。模型训练所依赖的训练集数据也被包含在了提供的压缩文件中,便于用户直接使用和操作。值得注意的是,通过调整模型训练集的大小,用户可以进一步提高垃圾短信的识别准确率。这意味着用户可以根据实际情况,对训练集进行优化,以适应不同类型的垃圾短信特征。 训练集中的数据通常包含大量经过标注的短信样本,其中包含“垃圾短信”和“非垃圾短信”两种标签。模型通过学习这些样本,逐步掌握区分垃圾短信的规则和特征,进而实现对新短信的自动分类。在机器学习领域,这属于监督学习范畴。具体的算法可以是逻辑回归、支持向量机、决策树、随机森林、神经网络等。 在模型的设计与实现过程中,需要考虑多个关键因素。文本预处理是垃圾短信识别的第一步,因为短信内容通常是非结构化的自然语言文本。预处理包括分词、去除停用词、文本向量化等步骤,以便将文本数据转换为模型可以处理的数值形式。特征提取也是模型能否准确识别的关键,有效特征可能包括特定关键词的出现频率、短信长度、发送时间等。 在模型的训练过程中,还需要进行适当的调参,即调整模型的超参数,比如神经网络的层数、每层的神经元数量、学习率、批处理大小等,以达到最佳的训练效果。此外,模型还需要进行交叉验证,以评估模型的泛化能力,确保模型在未知数据上也能有良好的表现。 Python作为一种高级编程语言,在数据科学和机器学习领域具有显著的优势。其丰富的库和框架,如NumPy、Pandas、Scikit-learn、TensorFlow、Keras等,极大地方便了开发者进行数据分析和模型构建。而且,Python的语法简洁明了,易于理解和使用,对于初学者和专业人员都是一个很好的选择。 在实际部署时,可以将模型封装在一个用户友好的交互界面后端,前端可以采用Web界面或桌面应用程序的形式。用户可以通过这个界面上传新的短信样本,查询识别结果,并根据需要调整训练集和模型参数。 本项目通过提供一个基于Python的垃圾短信识别模型,不仅帮助用户有效识别和过滤垃圾短信,还通过交互界面和本地部署的方式,给予了用户高度的自主性和隐私保护。随着机器学习技术的不断发展,未来的垃圾短信识别模型有望更加智能化、高效化,为用户提供更为精准的服务。
2025-10-31 00:02:31 145.47MB 人工智能 机器学习 python
1
在教育技术领域,特别是高等教育和在线学习的背景下,大数据分析、自然语言处理、机器学习、数据可视化、爬虫技术以及文本挖掘与情感分析等技术的应用变得越来越广泛。本项目《基于Python的微博评论数据采集与分析系统》与《针对疫情前后大学生在线学习体验的文本挖掘与情感分析研究》紧密相连,旨在优化线上教育体验,并为疫情期间和之后的在线教育提供数据支持和改进方案。 大数据分析作为一种技术手段,通过收集、处理和分析大量数据集,为教育研究提供了新的视角和方法。在这个项目中,大数据分析被用于梳理和解析疫情前后微博平台上关于大学生在线学习体验的评论数据。通过这种方法,研究者能够从宏观角度了解学生的在线学习体验,并发现可能存在的问题和挑战。 自然语言处理(NLP)是机器学习的一个分支,它使计算机能够理解、解释和生成人类语言。在本项目中,自然语言处理技术被用于挖掘微博评论中的关键词汇、短语、语义和情感倾向,从而进一步分析学生在线学习的感受和态度。 机器学习是一种人工智能技术,它让计算机能够从数据中学习并做出预测或决策。在本研究中,机器学习算法被用于处理和分析数据集,以识别和分类微博评论中的情绪倾向,比如积极、消极或中性情绪。 数据可视化是将数据转化为图表、图形和图像的形式,使得复杂数据更易于理解和沟通。在本项目中,数据可视化技术被用于展示分析结果,帮助研究者和教育工作者直观地理解数据分析的发现和趋势。 爬虫技术是一种自动化网络信息采集工具,能够从互联网上抓取所需数据。在本研究中,爬虫技术被用于收集微博平台上的评论数据,为后续的数据分析提供原始材料。 本项目还包括一项针对疫情前后大学生在线学习体验的文本挖掘与情感分析研究。该研究将分析学生在疫情这一特定时期内对在线学习的看法和感受,这有助于教育机构了解疫情对在线教育质量的影响,进而针对发现的问题进行优化和调整。 整个项目的研究成果,包括附赠资源和说明文件,为线上教育体验的优化提供了理论和实践指导。通过对微博评论数据的采集、分析和可视化展示,项目为教育技术领域提供了一个基于实际数据的决策支持平台。 项目成果的代码库名称为“covid_19_dataVisualization-master”,表明该项目特别关注于疫情对教育造成的影响,并试图通过数据可视化的方式向公众和教育界传达这些影响的程度和性质。通过这种方式,不仅有助于教育机构理解并改进在线教育策略,还有利于政策制定者根据实际数据制定更加有效的教育政策。 本项目综合运用了当前教育技术领域内的一系列先进技术,旨在为疫情这一特殊时期下的大学生在线学习体验提供深入的分析和改进方案。通过大数据分析、自然语言处理、机器学习、数据可视化和爬虫技术的综合运用,项目揭示了在线学习体验的多维度特征,并为优化线上教学提供了科学的决策支持。
2025-10-30 22:20:34 132.97MB
1
3D运动计划 该项目是Backyard Flyer项目的延续,您在其中执行了简单的方形飞行路径。 在这个项目中,您将整合在过去的几课中学到的技术,以规划一条通向城市环境的道路。 查看,以详细了解合格的提交内容。 设定说明 步骤1:下载模拟器 这是一个新的模拟器环境! 从下载适合您的操作系统的该项目的运动计划模拟器。 第2步:设置您的Python环境 如果尚未安装,请按照说明设置Python环境并使用Anaconda安装所有相关软件包。 步骤3:克隆此存储库 git clone https://github.com/udacity/FCND-Motion-Planning 步骤4:测试设定 该项目的首要任务是在此新模拟器中测试Backyard Flyer项目的。 验证您的Backyard Flyer解决方案代码是否按预期工作,并且您的无人机可以在新模拟器中执行方形飞行路径。 为此,请启动
2025-10-30 21:13:06 11.79MB Python
1
FCND-3D运动计划 该项目是Backyard Flyer项目的延续,您在其中执行了简单的方形飞行路径。 在这个项目中,您将整合在过去的几课中学到的技术,以规划一条通向城市环境的道路。 查看,以详细了解合格的提交内容。 可以在Udacity教室的GPU​​支持的虚拟机中执行此项目! 您无需下载模拟器和入门文件,只需在Udacity教室的虚拟工作区中完成此项目即可! 请按照以继续使用VM。 要在本地计算机上完成此项目,请按照以下说明进行操作: 步骤1:下载模拟器 这是一个新的模拟器环境! 从下载适合您的操作系统的该项目的运动计划模拟器。 第2步:设置Python环境 如果尚未安装,请按照说明设置Python环境并使用Anaconda安装所有相关软件包。 步骤3:克隆此存储库 git clone https://github.com/udacity/FCND-Motion-Planni
2025-10-30 21:12:25 11.95MB Python
1
倾斜光栅的制作方法、数据处理技术和MATLAB仿真应用。首先,文章讲解了倾斜光栅的制作流程,包括选择合适的材料(如玻璃、石英),采用光刻或物理刻蚀技术,并强调了控制倾斜角度的重要性。接着,文章讨论了数据处理部分,主要涉及扫描、检测和图像处理技术,用于提取光栅的几何信息。最后,文章展示了如何使用MATLAB进行倾斜光栅的仿真,模拟光传播过程及其产生的干涉、衍射等光学现象。文中还提供了Python和MATLAB的代码示例,帮助读者理解和实践相关技术。 适合人群:对光学器件特别是光栅感兴趣的科研人员和技术爱好者。 使用场景及目标:适用于希望深入了解倾斜光栅特性和应用的研究人员,以及希望通过实际操作掌握光栅制作和仿真的技术人员。 其他说明:文章不仅提供理论知识,还包括实用的代码示例,便于读者动手实践。
2025-10-30 18:23:06 796KB 数据处理 Python编程
1
使用Python的Tkinter工具包创建一个跳动的心形图案,这不仅是一个简单的图形展示,更是一个理工科学生表达情感的创意方式。该项目可以让学习者在实现一个有趣的功能——心形跳动的同时,深入掌握Tkinter组件的使用方法。Tkinter是Python的标准GUI(图形用户界面)库,它简单易学,功能强大,是初学者练习GUI编程的绝佳选择。 心形跳动的实现原理是通过定时器(Timer)触发一个函数,该函数周期性地更新画布上的图形,使心形位置产生变化,从而产生跳动的视觉效果。在Tkinter中,我们可以通过绑定事件和执行回调函数来实现定时器的功能。具体来说,我们可能会使用到的组件包括Canvas(画布),用于绘制图形;Timer(定时器),用于周期性触发事件;以及Button(按钮)等其他控件,可能会用作启动心形跳动的触发器。 在实现心形跳动的过程中,学习者会接触到Tkinter的基本概念,如窗口(Window)的创建、事件循环、组件的布局管理等。此外,该项目还涉及到一些高级概念,如回调函数的使用,以及如何通过改变组件属性来创建动画效果。最终,通过这个项目,学习者不仅能够完成一个有趣的作品,而且能够加深对Tkinter工具包的理解,提升编程技能。 除了技术层面,项目还具有浪漫的寓意,可以作为表达爱意的工具。它向人们展示了理科生如何利用自己的专业技能来制造温馨和浪漫,将冰冷的代码变成一种情感的表达。这种独特而具有创意的表达方式,能够使理科生在表达情感时既不失去自己的理工科特色,又能传达出真挚的情感。 通过Tkinter实现的心形跳动项目,不仅可以帮助学习者掌握GUI编程的技能,更赋予了理工科生一个独特的表达情感的方式。在学习编程的过程中,还能够体会到技术与艺术结合带来的浪漫,这无疑是一件令人兴奋和愉悦的事情。
2025-10-30 14:38:12 6KB Python Tkinter
1
AdGuard Home的自定义订阅 从各种来源编译的过滤器和正则表达式,可与AdGuard Home一起使用。 要使用这些过滤器,只需将以下链接添加到您的DNS阻止列表。 filter.txt(域/规则) regex.txt whitelist.txt 此文本文件中指定的项目将包含在filters.txt中,以解决冲突。
2025-10-30 10:54:58 556KB Python
1
随着数据分析领域的日益火热,掌握Python数据分析成为了许多数据科学家和工程师的必备技能。本次分享的内容来自B站知名教育博主@林粒粒呀的Python数据分析课程。课程内容丰富全面,涵盖了Python基础知识以及数据分析的多个重要环节。 Python基础知识是数据分析的重要基石。Python作为一种高级编程语言,以其简洁明了的语法和强大的社区支持,成为了数据分析的首选工具之一。Python基础知识包括但不限于变量、数据类型、控制结构、函数定义、面向对象编程等。掌握了这些基础,便能够在后续的数据处理中得心应手。 数据读取是数据分析的第一步。在实际工作中,数据往往存储在多种格式的文件中,比如CSV、Excel、JSON等。因此,能够熟练使用Python读取这些文件并将其加载到数据分析环境中至关重要。在本课程中,@林粒粒呀老师将教授如何使用Python内置的库如pandas来读取各种格式的数据文件,并理解数据结构与数据框架的概念。 数据评估是确保数据质量的关键环节。在拿到数据之后,必须对其进行全面的评估,包括数据的完整性、准确性以及是否存在异常值等。评估之后,对于发现的问题进行清洗是数据分析中不可或缺的步骤。数据清洗可能包括处理缺失值、去除重复项、修正错误以及格式转换等操作。在本课程中,学生将学习到如何运用pandas进行有效的数据清洗,为后续分析打下坚实的基础。 数据分许是核心环节之一。数据分析旨在通过统计方法对数据进行解读,找出数据之间的关联性、趋势或者模式。在本课程中,@林粒粒呀老师将结合案例,教授学生如何进行数据的统计分析和假设检验,使用Python中的科学计算库如NumPy和SciPy进行数据分析。 数据可视化是将分析结果以图表的形式直观呈现给观众。一个良好的可视化不仅能够帮助数据分析人员快速理解数据,也便于向非专业人员展示分析结论。在课程中,学生将学习如何使用matplotlib、seaborn等可视化库,将复杂的数据分析结果转化为易于理解的图表,如柱状图、折线图、散点图以及热力图等。 通过本课程的学习,学员不仅能够掌握Python在数据分析方面的应用,更能熟悉数据分析的全流程。从数据的读取、评估、清洗到分析和可视化,每一步都至关重要。此外,本课程内容不仅限于理论讲解,还包括了大量的实战练习,帮助学员巩固所学知识,提高解决实际问题的能力。 @林粒粒呀老师的Python数据分析课程是一门全面且实用的课程,无论是对于数据分析新手还是希望提升自我技能的数据分析师来说,都是不可多得的学习资源。通过系统的学习,学员将能够快速地提升自己的数据分析技能,为职业发展奠定坚实的基础。
2025-10-30 10:25:37 14.96MB Python项目
1
正文内容: 《机器学习实战(蜥蜴书第三版实战源码).zip》是一个压缩包文件,它包含了与《机器学习实战》第三版图书相关的代码实践材料。文件中的核心内容是基于Python语言的机器学习学习笔记,这些笔记以Jupyter Notebook格式提供。Jupyter Notebook是一个开源的Web应用程序,允许用户创建和共享包含实时代码、方程、可视化和解释文本的文档。 这份资源主要是为了辅助读者更好地理解和掌握机器学习的概念,并通过实际编码的方式加深记忆。实践源码的参考书目是《机器学习实战》的第三版,该书是由多位作者共同撰写的,它提供了机器学习领域的深入介绍,尤其适合那些希望从实践中学习的读者。该书不仅覆盖了理论知识,还强调了如何使用Python进行实际的机器学习项目开发。 《机器学习实战》第三版可能包含了多个机器学习的案例分析,展示了从数据处理、特征选择、模型构建到评估模型性能的整个过程。这些案例可能涵盖了多种算法,包括但不限于监督学习、无监督学习、深度学习以及强化学习等。通过阅读这本书籍,并结合提供的实战源码,读者可以逐步构建起自己的机器学习项目,提高解决实际问题的能力。 在使用这些源码时,读者需要具备一定的Python编程基础,以及对机器学习中常用算法和概念有一定的了解。这些代码文件可能包含了详细的注释,解释了代码的功能和背后的逻辑,有助于读者更好地理解机器学习的每一步是如何实现的。此外,由于Jupyter Notebook的互动性,读者可以在学习过程中实时修改和运行代码,这对于巩固理论知识和提升实际操作能力非常有帮助。 在使用这份资源时,读者还可以参考网络上其他学习者或专家的讨论和笔记,这样的社区支持可以帮助读者在遇到困难时快速找到解决方案。不过,需要注意的是,由于机器学习领域更新迅速,有些代码可能需要根据最新的库版本进行调整,以确保能够顺利运行。 这个压缩包文件是一个宝贵的资源,它不仅包含了详细的机器学习实战代码,还通过Jupyter Notebook的互动学习方式,提供了一种高效的学习路径。对于那些希望深入研究Python机器学习的读者来说,这是一个非常实用的辅助工具。
2025-10-30 01:11:58 60.29MB jupyter python 机器学习实战
1
##################### OCRProcessing 脚本######################### #### 作者:Than Grove 日期:2013 年 2 月 8 日 这些是我正在创建的脚本,用于处理 Zach 制作的 NGB 藏文扫描的 OCR XML 输出。 OCR 输出是一个 XML 文件(带有 .txt 扩展名),每个集合的卷。 这些脚本的目标是 创建一个过程,根据目录数据,它将单个卷文件分解为文本文件,这些文本文件将包含每个文本的 XML 标记文件。 此过程将为每个文本分配一个唯一的顺序 ID。 为每个以文本 id 命名的文本创建单独的 bibl 记录。 创建一个 XML 文件,该文件在为 THL 系统设计的 TEI Tibbibl 标记中对目录层次结构 (cat->vol->text) 进行编码,该标记将引用上述文本文件和 bibl 文
2025-10-30 01:05:10 50KB Python
1