# 基于SUMO和强化学习的交通信号控制系统
## 项目简介
本项目是一个基于SUMO(Simulation of Urban Mobility)和强化学习中的QLearning算法进行交通信号灯控制的代码实现。项目的主要目的是通过智能体在SUMO环境中进行交互学习,学会控制交通信号灯以优化交通流量。
## 项目的主要特性和功能
1. SUMO环境模拟项目使用SUMO环境模拟交通环境,包括交通网络文件、路线文件等,用于模拟真实的交通交叉路口情况。
2. 强化学习算法通过QLearning算法训练智能体,智能体根据环境反馈的奖励学习如何控制交通信号灯。
3. 探索策略使用Epsilon贪婪策略作为探索策略,在利用当前已知的最佳行动的同时,也会探索新的可能行动。
4. 环境交互智能体在SUMO环境中进行交互,通过不断地观察环境状态、采取行动、接收反馈来更新知识库和策略。
5. 结果保存模拟结果保存在指定的CSV文件中,用于后续的分析和优化过程。
2025-04-14 09:56:54
1.39MB
1