内容概要:本文档为 Conformal 软件的使用指南,包括了多种配置方式的支持与限制说明以及对 VHDL 和 SystemVerilog 语言的相关规定与用法介绍,提供了软件使用时应注意的关键细节。它详细阐述了关于全局信号、组件配置、嵌套配置等功能的操作规则和限制条件,还涵盖了SystemVerilog的模块层次支持情况。 适用人群:硬件设计师和验证工程师,以及从事VHDL或者SystemVerilog语言进行设计描述的工程技术人员。 使用场景及目标:帮助专业人员理解和应用 Conformal 工具来完成等价性检查任务,确保两个不同但理论上等价的设计实际表现一致,提升设计验证的有效性和准确性。 其他说明:请注意,在多个实体间定义同一全局信号是不被允许的做法之一,同时文中提到了特定配置下不受支持的功能列表。
2025-09-24 10:11:46 3.57MB VHDL SystemVerilog
1
博文https://blog.csdn.net/zyp626/article/details/132679351#comments_35062104中的插件sublime-vhdl-master.zip Vivado是Xilinx公司推出的一款FPGA设计套件,它集成了设计输入、综合、实现以及硬件调试等功能,为设计工程师提供了全方位的设计解决方案。Vivado支持多种设计输入方式,包括硬件描述语言(HDL)如VHDL和Verilog,以及高层次的综合工具,可将高层次语言如C/C++转化为HDL,加速设计过程。 Sublime Text是一款流行的文本和源代码编辑器,以其良好的扩展性、丰富的插件支持和快捷的编辑体验而受到许多开发者的青睐。Sublime Text支持多种编程语言的语法高亮显示,并且可以通过安装插件来增强其功能。在硬件开发领域,尤其是在FPGA设计中,使用Sublime Text编辑HDL代码是一种常见的做法。 vhdl是一种硬件描述语言,全称为VHSIC Hardware Description Language(超高速集成电路硬件描述语言),VHDL能够清晰地描述数字电路的逻辑结构和行为特性。它广泛应用于数字电路设计和电子系统的设计验证中,尤其是在复杂的FPGA和ASIC设计中扮演着重要角色。 博文作者通过创建名为sublime-vhdl-master.zip的压缩包文件,分享了一款为Sublime Text设计的插件——sublime-vhdl-master。这款插件主要功能是实现VHDL语法的实时检查,帮助设计者在编写VHDL代码时即时发现错误,提高代码质量和设计效率。使用这款插件后,用户能够在编写代码的过程中获得语法提示、错误检测以及可能的代码改进建议,这对于确保代码的正确性和提高设计的可靠性至关重要。 在FPGA设计流程中,代码的正确性和可靠性是至关重要的。因此,实时语法检查功能可以在设计的早期阶段发现潜在的问题,避免在后续的综合、实现阶段出现不必要的错误和延误。这对于缩短产品上市时间、降低成本具有重要意义。另外,由于FPGA设计的复杂性,正确使用工具链中的各种工具和插件能够提升工作效率,减少重复劳动,让工程师能够专注于创新和设计优化。 Sublime Text的插件机制是通过社区驱动的,许多开发者会根据自己的需求或者行业的需求开发出各式各样的插件,使得Sublime Text可以适用于更多元化的开发场景。sublime-vhdl-master插件的推出,正是这种社区精神的体现。它不仅方便了Vivado用户在Sublime Text中进行VHDL编码,也推动了硬件开发工具的多样化和高效化。 sublime-vhdl-master.zip作为一款针对Sublime Text编辑器的VHDL语法实时检查插件,填补了Sublime Text在硬件开发领域的空白,为Vivado用户提供了一个便捷、高效的工作环境,极大地提升了VHDL开发的体验。
2025-09-22 13:15:13 21KB Vivado sublime vhdl
1
SpaceWire是一种高速、低延迟的通信协议,常用于航天器数据处理和传输。它被设计为在恶劣的太空环境中提供可靠的数据通信。VHDL(Very High Speed Integrated Circuit Hardware Description Language)是一种硬件描述语言,用于设计和实现数字系统,如FPGA(Field-Programmable Gate Array)和ASIC(Application-Specific Integrated Circuit)。 在这个"SpaceWire 节点的逻辑源代码"中,我们可以预期找到的是用VHDL编写的用于实现SpaceWire协议功能的代码模块。这些模块可能包括以下部分: 1. **SpaceWire接口**:这是与物理SpaceWire连接相交互的逻辑,通常包括RX(接收)和TX(发送)路径。VHDL代码会定义这些接口的时序和信号特性,确保数据的正确传输。 2. **编码/解码器(SW_CODEC)**:文件名"SW_CODEC"暗示了这个代码可能包含了编码和解码功能。在SpaceWire中,数据可能需要经过特定的编码方式以适应传输要求,比如前向错误纠正(FEC)编码,以提高数据的可靠性。 3. **数据包处理**:SpaceWire协议可能需要处理不同大小的数据包,VHDL代码可能包含数据包的构建、解析和校验逻辑。 4. **控制逻辑**:这包括仲裁、流控、错误检测和恢复机制。控制逻辑确保多个节点可以同时访问网络,避免冲突,并在检测到错误时采取适当行动。 5. **时钟管理和同步**:由于在空间环境中,时钟同步非常重要,VHDL代码可能会包含时钟管理单元,确保节点间的时钟同步。 6. **状态机**:在VHDL设计中,状态机通常用于管理和控制复杂的通信过程,例如数据的接收和发送序列。 7. **测试平台**:为了验证设计的正确性,通常会包含一个测试平台,它能模拟各种输入条件并检查输出是否符合预期。 学习和理解这样的源代码可以帮助开发者深入理解SpaceWire协议的工作原理,以及如何在实际硬件中实现。这将涉及到数字逻辑设计、通信协议和FPGA编程等多方面的知识。对于那些在航天工程、卫星通信或者相关领域工作的人来说,这种源代码是宝贵的资源,有助于他们优化和自定义自己的SpaceWire系统。
2025-07-17 11:31:31 349KB SpaceWire VHDL
1
第1章:绪论 第2章:VHDL入门 第3章:VHDL程序结构 第4章:VHDL语言要素 第5章:VHDL顺序语句 第6章:VHDL并行语句 第7章:VHDL的藐视风格 第8章:仿真 第9章:综合 第10章:有限状态机FSM 第11章:数字滤波器设计 第12章:VHDL设计平台使用导向 第13章:VHDL设计实践与实验 第14章:电子设计竞赛实例介绍
2025-07-15 15:52:39 4.54MB VHDL
1
XGigE IP是一种高速网络通信协议,专为通过以太网传输高速图像数据而设计。它基于GigE Vision Streaming Protocol,这是一种广泛应用于机器视觉领域,尤其是工业相机制造商和软件开发人员之间的标准化通信协议。GigE Vision确保了各种不同品牌和型号的相机能够在以太网环境中稳定、高效地传输图像数据,满足了工业级实时视频处理和分析的需要。 VHDL(VHSIC Hardware Description Language)是一种用于描述电子系统硬件功能和结构的硬件描述语言。它允许设计师使用文本形式来描述硬件电路,随后可以通过逻辑综合转换为可实现的硬件结构。VHDL源码为开发者提供了灵活性和强大的设计工具,使其能够设计复杂的数字逻辑电路,并可以针对特定硬件平台如FPGA(现场可编程门阵列)进行优化。 在本压缩包中,还包含了基于AC701 FPGA板卡的完整参考工程。AC701是Xilinx公司推出的一款高性能FPGA开发板,支持高速串行收发器、丰富的I/O接口以及灵活的逻辑资源。这一参考工程为使用AC701板卡的开发者提供了一个实际的案例,帮助他们理解和掌握如何利用XGigE IP和GigE Vision协议,以及VHDL语言在FPGA上实现图像数据的高速处理和传输。开发人员可以通过这个参考工程学习如何设计、配置和调试FPGA,以及如何将其用于高速数据通信。 此外,压缩包中还包含了几张图片文件,虽然具体内容未知,但可以推测这些图片可能与AC701板卡的实际应用、相关接口或具体的工程实现有关。这些图片有助于开发者更直观地理解硬件设置和项目布局,从而更好地将源码和设计转化为实际的物理实现。 XGigE IP和GigE Vision Streaming Protocol为高速图像数据的以太网传输提供了标准化的解决方案,而VHDL源码为复杂硬件设计提供了强大的描述工具。结合AC701 FPGA板卡的完整参考工程,开发人员可以利用这些资源开发出性能优越的图像处理和通信系统,进一步推动工业自动化和机器视觉技术的发展。
2025-07-13 18:46:03 467KB ajax
1
0 引言   电梯控制器是控制电梯按顾客要求自动上下的装置。本文采用VHDL语言来设计实用三层电梯控制器,其代码具有良好的可读性和易理解性,源程序经A1tera公司的MAX+plus II软件仿真,目标器件选用CPLD器件。通过对三层电梯控制器的设计,可以发现本设计有一定的扩展性,而且可以作为更多层电梯控制器实现的基础。   1 三层电梯控制器将实现的功能   (1)每层电梯入口处设有上下请求开关,电梯内设有顾客到达层次的停站请求开关。   (2)设有电梯入口处位置指示装置及电梯运行模式(上升或下降)指示装置。   (3)电梯每秒升(降)一层楼。   (4)电梯到达有停站请求的楼层
2025-06-20 17:24:31 342KB
1
书系统地介绍了一种硬件描述语言,即VHDL语言设计数字逻辑电路和数字系统的新方法。这是电子电路设计方法上一次革命性的变化,也是迈向21世纪的电子工程师所必须掌握的专门知识。 本书以数字逻辑电路设计为主线,用对比手法来说明数字逻辑电路的电原理图和VHDL语言程序之间的对应关系,并列举了众多的实例。另外,还对设计中的有关技术,如仿真、综合等作了相应说明。
2025-06-19 10:28:27 17.82MB VHDL 逻辑电路
1
Mealy型状态机的设计 状态机的输出为现态和现输入的函数 例如: 给内存控制器增加一个信号write_mask,以便使其为1时禁止we信号有效 if (present_state = write) and (write_mask = '0') then we <= '1' ; else we <= '0' ; end if;
2025-06-18 22:53:28 20.91MB vhdl
1
1.引言当前以硬件描述语言为工具、逻辑器件为载体的系统设计越来越广泛。在设计中,状态机是最典型、应用最广泛的电路模块,其在运行速度的高效、执行时间的确定性和高可靠性方面都显现出强大的优势。状态机及其设计技术水平决定了系统设计的优劣[1]。如何设计一个最优化的状态机是我们必须面对的问题。本文将详细讨论状态机编写的各个步骤对优化状态机所起到的作用。2.状态机的分类状态机由状态寄存器和组合逻辑电路构成,能够根据控制信号按照预先设定的状态进行状态转移,是协调相关信号动作,完成特定操作的控制中心。状态机可以分为Moore型和Mealy型两种基本类型。设计时采用哪种方式的状态机要根据设计的具体情况决定,输
2025-06-18 22:34:21 264KB
1
VHDL(Very High Speed Integrated Circuit Hardware Description Language)是一种用于电子设计自动化领域的硬件描述语言,广泛应用于数字系统的设计,如FPGA(Field-Programmable Gate Array)和ASIC(Application-Specific Integrated Circuit)。有限状态机(Finite State Machine, FSM)是VHDL中的一个重要概念,它能够描述和实现复杂逻辑功能,常用于控制单元的设计。 有限状态机由几个关键部分组成:状态、状态转换、输入和输出。状态是FSM的核心,每个状态代表系统的一种行为或模式。状态之间的转换由当前状态和输入信号共同决定。输入可以触发状态的改变,而输出则是系统对当前状态的响应。 在VHDL中,有限状态机通常有两种设计方法: Moore型和Mealy型。Moore型状态机的输出仅取决于当前状态,不依赖于输入;而Mealy型状态机的输出不仅与当前状态有关,还与输入信号有关。这两种类型在实际设计中各有优势,需根据具体需求选择。 设计VHDL有限状态机时,首先需要定义状态编码,即为每个状态分配一个唯一的二进制值。然后,定义状态转换表,这个表包含了所有可能的输入和对应的状态转移。接下来,用case语句来实现状态转换逻辑,同时定义输出逻辑。通过进程(process)来同步状态的更新和输入的处理。 以下是一个简单的VHDL有限状态机代码例子: ```vhdl library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity fsm is Port ( clk : in STD_LOGIC; reset : in STD_LOGIC; input : in STD_LOGIC; output : out STD_LOGIC); end fsm; architecture Behavioral of fsm is type states is (state1, state2, state3); signal current_state, next_state : states; begin process(clk, reset) begin if reset = '1' then current_state <= state1; elsif rising_edge(clk) then current_state <= next_state; end if; end process; process(current_state, input) begin case current_state is when state1 => if input = '1' then next_state <= state2; output <= '0'; else next_state <= state1; output <= '1'; end if; when state2 => next_state <= state3; output <= '1'; when state3 => next_state <= state1; output <= '0'; end case; end process; end Behavioral; ``` 在这个例子中,我们定义了一个有三个状态(state1, state2, state3)的FSM,其输出和状态转换取决于当前状态和输入信号。 在学习VHDL有限状态机设计时,配合“VHDL实用教程-有限状态机(1).pdf”这样的资料,可以帮助理解基本概念、设计步骤和实例分析。通过不断实践,可以掌握如何将复杂的逻辑功能转化为简洁、清晰的VHDL代码,为数字系统设计打下坚实基础。对于初学者来说,这是一个很好的起点,能够帮助他们逐步深入理解和应用VHDL进行硬件描述。
2025-06-18 22:28:31 223KB vhdl 有限状态机
1