xlnetmid event classification for financial news
2024-07-31 15:20:42 742.31MB 深度学习
1
Thoughtful Data Science: A Programmer's Toolset for Data Analysis and Artificial Intelligence with Python, Jupyter Notebook, and PixieDust Bridge the gap between developer and data scientist by creating a modern open-source, Python-based toolset that works with Jupyter Notebook, and PixieDust. Key Features Think deeply as a developer about your strategy and toolset in data science Discover the best tools that will suit you as a developer in your data analysis Accelerate the road to data insight as a programmer using Jupyter Notebook Deep dive into multiple industry data science use cases Book Description Thoughtful Data Science brings new strategies and a carefully crafted programmer's toolset to work with modern, cutting-edge data analysis. This new approach is designed specifically to give developers more efficiency and power to create cutting-edge data analysis and artificial intelligence insights. Industry expert David Taieb bridges the gap between developers and data scientists by creating a modern open-source, Python-based toolset that works with Jupyter Notebook, and PixieDust. You'll find the right balance of strategic thinking and practical projects throughout this book, with extensive code files and Jupyter projects that you can integrate with your own data analysis. David Taieb introduces four projects designed to connect developers to important industry use cases in data science. The first is an image recognition application with TensorFlow, to meet the growing importance of AI in data analysis. The second analyses social media trends to explore big data issues and natural language processing. The third is a financial portfolio analysis application using time series analysis, pivotal in many data science applications today. The fourth involves applying graph algorithms to solve data problems. Taieb wraps up with a deep look into the future of data science for developers and his views on AI for data science. What you will learn Bridge the gap between developer and data scientist with a Python-based toolset Get the most out of Jupyter Notebooks with new productivity-enhancing tools Explore and visualize data using Jupyter Notebooks and PixieDust Work with and assess the impact of artificial intelligence in data science Work with TensorFlow, graphs, natural language processing, and time series Deep dive into multiple industry data science use cases Look into the future of data analysis and where to develop your skills Who this book is for This book is for established developers who want to bridge the gap between programmers and data scientists. With the introduction of PixieDust from its creator, the book will also be a great desk companion for the already accomplished Data Scientist. Some fluency in data interpretation and visualization is also assumed since this book addresses data professionals such as business and general data analysts. It will be helpful to have some knowledge of Python, using Python libraries, and some proficiency in web development. Table of Contents Chapter 1 Perspectives on Data Science from a Developer Chapter 2 Data Science at Scale with Jupyter Notebooks and PixieDust Chapter 3 PixieApp under the Hood Chapter 4 Deploying PixieApps to the Web with the PixieGateway Server Chapter 5 Best Practices and Advanced PixieDust Concepts Chapter 6 Image Recognition with TensorFlow Chapter 7 Big Data Twitter Sentiment Analysis Chapter 8 Financial Time Series Analysis and Forecasting Chapter 9 US Domestic Flight Data Analysis Using Graphs Chapter 10 Final Thoughts
2024-07-28 12:25:03 22.87MB Data  Science AI  Financial
1
金融占星术统计 自古代文明以来,人们观察到,当特定的行星循环重复发生时,自然又会发生一些与过去相似的世俗事件。 在公元前1800年注意到这种相关性的,我们在2021年,占星术仍在实践中,受到某人的爱戴,而另一些人则恨之入骨。 某些预测能力可能隐藏在行星周期的背后吗? 好吧,让我们考虑一下...从统计学家和市场分析师的角度来看,完全可以接受可能存在可以预测价格的季节性影响。 正确的? 通常在时间序列中,按Wikipedia页面中的说明,按季节,按月,按周,按季度等来模拟。 如果您对此进行考虑,您可能会问:一年,一个月或一天是什么? 这只是时间度量,但结果是这些度量与行星有关:我们的年份是地球经度位置与太阳的关系。 我们的月份大约是28天的月球自转周期,而我们的24小时(昼/夜)是地球自转周期。 最后,我们的日子名称与某些行星的名称相似,并且有其意图,如《维基百科页面所述。 阿兹台克人也有一
1
基本面分析 该程序包从FinancialModelingPrep收集了一大批公司(13.000+)的基础知识和详细的公司股票数据,并使用Yahoo Finance获取任何金融工具的股票数据。 它允许用户进行大部分基本的基本分析。 它还提供了快速比较多个公司或进行行业分析的可能性。 要查找特定行业和/或行业的符号,请查看我的或在我的上查看数据的可视化。 职能 在这里,您可以找到此软件包中每个模块分开的可用功能列表。 细节 available companies -显示可用于收集基本数据的公司的完整列表,包括当前价格和公司所在的交易所。 这是一个广泛的列表,有超过13.000家公司。 profile -提供有关行业,行业交流和公司描述的信息。 quote -提供有关公司的实际信息,其中包括日高,市值,开盘价和收盘价以及市盈率。 enterprise -随时间显示股票价格,股票数量,市
1
Value-at-Risk The New Benchmark for Managing Financial Risk, 3rd Edition
2023-03-14 22:46:24 10.94MB FRM_Lv1_VR
1
An accessible treatment of Monte Carlo methods, techniques, and applications in the field of finance and economics. Providing readers with an in-depth and comprehensive guide, the Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics presents a timely account of the applicationsof Monte Carlo methods in financial engineering and economics
2023-03-12 23:23:41 29.27MB Monte Carlo Simulation
1
Implementing QuantLib
2023-03-02 10:43:07 1.77MB QuantLib C++ Financial
1
quickfixj-spring-boot-starter:用于QuickFIXJ的Spring Boot Starter
2022-12-27 09:58:17 123KB java spring spring-boot financial
1
这份免费的Python免费软件指南具有可免费下载的数据集,将计量经济学的技术带到了生活中,向读者展示了如何使用这个非常流行的软件包来实施《金融计量经济学入门》中介绍的方法。 该指南旨在与主要教科书一起使用,它将使读者有信心和技巧来估计和解释自己的模型,同时该教科书将确保他们对概念基础有透彻的理解。 该指南借鉴了剑桥大学出版社克里斯·布鲁克斯(Chris Brooks)于2019年出版的《金融计量经济学概论》中的资料。 该指南旨在与该书一起使用,并且该书的页码在每个小节和小节标题后给出。
2022-10-19 21:12:31 10.5MB Python financial econometrics education
1
柳树 willowtree是Michael Curran的同名衍生产品定价模型的开源Python实现。 Curran,M.(2001年): 什么是柳树? 柳树是一种高效的重组格子,旨在快速,准确地对衍生合约进行定价。 它通过离散时间马尔可夫链直接对标准布朗运动进行建模,所得的估计值可作为更复杂过程(例如几何布朗运动)的基础。 晶格具有两个鲜明的特征: 它根据布朗运动作为时间的平方根扩展,并且与二项式模型不同,后者随着时间线性增长。 它在一开始就非常快地打开,覆盖了被标准树忽略的高概率区域,后来又慢慢地被限制在正态分布的置信度范围内。 这方面既避免浪费时间和计算资源浪费在分布的尾部,又对几乎不影响当前证券价格的定义的区域,并且避免了修剪树的任意做法,即无视分支,以及他们的后代,位于低概率区域; 它在每个时间步中具有恒定数量的节点。 随着时间的推移,该数字线性增长,而不是二项式模型中
1