LaneNet车道检测 使用tensorflow主要基于IEEE IV会议论文“走向端到端的车道检测:实例分割方法”,实现用于实时车道检测的深度神经网络。有关详细信息,请参阅其论文 。 该模型由编码器-解码器阶段,二进制语义分割阶段和使用判别损失函数的实例语义分割组成,用于实时车道检测任务。 主要的网络架构如下: Network Architecture 安装 该软件仅在带有GTX-1070 GPU的ubuntu 16.04(x64),python3.5,cuda-9.0,cudnn-7.0上进行了测试。 要安装此软件,您需要tensorflow 1.12.0,并且尚未测试其他版本的ten
2025-04-16 15:39:22 48.22MB deep-learning tensorflow lane-detection
1
深度神经网络(Deep Neural Network, DNN)是机器学习领域的一种强大模型,尤其在图像识别、语音识别和自然语言处理等复杂任务上表现卓越。MATLAB作为一款强大的数学计算软件,提供了丰富的工具箱来实现深度学习模型的构建、训练和预测。本资料包“matlab 深度神经网络预测(含matlab源码)”显然是一份包含MATLAB源代码的资源,用于指导用户如何在MATLAB中构建和应用DNN进行预测任务。 我们来深入了解MATLAB中的深度学习工具箱。MATLAB深度学习工具箱提供了许多预定义的网络架构,如卷积神经网络(Convolutional Neural Networks, CNN)、循环神经网络(Recurrent Neural Networks, RNN)和全连接网络(Fully Connected Networks),以及自定义网络的能力。这些网络可以用来处理各种类型的数据,包括图像、时间序列和结构化数据。 1. **构建深度神经网络**:在MATLAB中,你可以使用`deepNetwork`函数或者直接调用预定义的网络架构,如`alexnet`, `vgg16`, `resnet50`等。用户可以通过设置网络层数、每层的节点数量、激活函数(如ReLU、sigmoid或tanh)以及权重初始化方式来定制网络结构。 2. **数据预处理**:在训练DNN之前,数据通常需要预处理,包括归一化、标准化、特征提取等。MATLAB提供了`imresize`、`im2double`等函数来处理图像数据,`timeseries`函数处理时间序列数据,以及`fitcsvm`等函数对结构化数据进行转换。 3. **训练过程**:在MATLAB中,你可以使用`trainNetwork`函数来训练DNN。该函数接受训练数据、标签、网络结构以及训练选项,如学习率、优化器(如SGD、Adam)、损失函数(如交叉熵)等参数。训练过程中,可以使用`plotTrainingLoss`和`plotTrainingAccuracy`等函数监控训练状态。 4. **模型验证与调整**:通过交叉验证和超参数调优,可以提高模型的泛化能力。MATLAB提供`crossval`函数进行交叉验证,以及`tuneHyperparameters`函数进行超参数优化。 5. **模型预测**:训练完成后,使用`predict`函数将模型应用于新数据,进行预测。在本资料包中,MATLAB源码可能包含了从数据预处理到模型训练再到预测的完整流程。 6. **源码解读**:`MATLAB-DNN-master`这个文件夹很可能是项目源代码的根目录,其中可能包含.m文件(MATLAB脚本或函数),数据集,配置文件等。通过深入研究这些源码,可以学习到如何在实际项目中应用MATLAB的深度学习工具箱。 这份MATLAB深度神经网络预测资料包是一个宝贵的教育资源,它让你能够亲手实践DNN的构建、训练和预测过程,理解每个步骤的实现细节,并从中提升深度学习技能。通过分析和运行源代码,你将更好地掌握MATLAB在深度学习领域的应用,为你的未来项目打下坚实的基础。
2025-04-09 19:57:59 11.08MB matlab 深度学习 网络预测
1
基于Springboot+Vue+Python深度神经网络学习算法水质管理预测系统设计毕业源码案例设计
2024-04-30 13:48:38 4.21MB
1
deep-learning personal practice 深度学习个人练习,该项目实现了深度学习中一些常用的算法,内容包括: 四种初始化方法:zero initialize, random initialize, xavier initialize, he initialize。 深度神经网络 正则化 dropout 三种梯度下降方法:BGD, SGD, mini-batch 六种优化算法:momentum、nesterov momentum、Adagrad、Adadelta、RMSprop、Adam 梯度检验 batch normalization recurrent neural network (RNN) Note: 下列 1-10中网络架构主要为四大块: initialize parameters、forward propagation、backward propagati
2023-10-06 17:02:27 341KB 附件源码 文章源码
1
NNFusion是一种灵活高效的DNN编译器,可以从DNN模型描述(例如TensorFlow冻结模型和ONNX格式)生成高性能可执行文件。以高效的编译器为核心,NNFusion的目标是: 促进全栈模型优化 提供无框架的代码生成功能 支持新的加速器设备作为目标推理设备 谁应该考虑使用NNFusion? 想要加快其预定义或预训练的DNN模型的执行性能的开发人员。 希望将其经过预训练的模型作为无框架源代码且库依赖性最小的开发人员。 想要快速尝试新的编译器优化思想或对某些特定模型进行自定义优化的研究人员。 :raising_hands: 突出特点 提供全栈优化机制,包括: 数据流图优化,例如CSE,编译时常量折叠等。 特定于模型的内核选择,内核协同调度,内核融合和自动内核调谐器集成。 静态内存布局和布局优化。 提供提前和源到源(模型到代码)的编译,以减少运行时的开销并消除库/框架的依赖关系。 支持流行的DNN模型格式,包括
2023-04-05 19:56:36 86.94MB C++
1
LaneNet车道检测 使用tensorflow主要基于IEEE IV会议论文“走向端到端的车道检测:实例分割方法”,实现用于实时车道检测的深度神经网络。有关详细信息,请参阅他们的论文 。 该模型由编码器-解码器阶段,二进制语义分割阶段和使用判别损失函数的实例语义分割组成,用于实时车道检测任务。 主要的网络架构如下: Network Architecture 安装 该软件仅在带有GTX-1070 GPU的ubuntu 16.04(x64),python3.5,cuda-9.0,cudnn-7.0上进行了测试。 要安装此软件,您需要tensorflow 1.12.0,并且尚未测试其他版本的tensorflow,但我认为它可以在版本1.12以上的tensorflow中正常工作。 其他必需的软件包,您可以通过以下方式安装它们 pip3 install -r requirements.txt
1
针对Tiny YOLOv3算法在扶梯异常行为检测时存在高漏检率和低准确率的问题,提出一种改进的Tiny YOLOv3网络结构用于扶梯异常行为检测。利用K-means++算法对数据集中的目标边框进行聚类,根据聚类结果优化网络的先验框参数,使训练网络在异常行为检测方面具有一定的针对性。利用多层深度可分离卷积提取深层次的语义信息,加深特征提取的网络结构;增加一个尺度用于低层语义信息的融合,改进原有算法预测层的结构;使用GPU进行多尺度训练,得到最优的权重模型,对扶梯异常行为进行检测。实验结果表明,优化后的模型与Tiny YOLOv3相比,平均漏检率减小了22.8%,检测精度提高了3.4%,检测速度是YOLOv3的1.7倍,更好地兼顾了检测的精度和实时性。
2023-03-28 20:50:17 19.76MB 图像处理 异常行为 自动扶梯 深度可分
1
如何从少数训练样本中学习并识别新的类别对于深度神经网络来说是一个具有挑战性的问题。针对如何解决少样本学习的问题,全面总结了现有基于深度神经网络的少样本学习方法,涵盖了方法所用模型、数据集及评估结果等各个方面。具体地,针对基于深度神经网络的少样本学习方法,提出将其分为数据增强方法、迁移学习方法、度量学习方法和元学习方法四种类别;对于每个类别,进一步将其分为几个子类别,并且在每个类别与方法之间进行一系列比较,以显示各种方法的优劣和各自的特点。最后强调了现有方法的局限性,并指出了少样本学习研究领域未来的研究方向。
2023-02-24 00:24:12 1.56MB 少样本学习 数据增强 迁移学习
1
如何从少数训练样本中学习并识别新的类别,对于深度神经网络来说是一个具有挑战性的问题。针对如何解决少样本学习的问题,全面总结了现有的基于深度神经网络的少样本学习方法,涵盖了方法 所用模型、数据集及评估结果等各个方面。
2023-02-14 21:47:46 726KB 少样本学习综述
1
 针对高等院校网络舆情分析与危机舆情预警的需求,文中对语义情感分析方法进行了研究。通过结合深度学习中循环神经网络(CNN)和心理学领域的注意力机制模型(Attention),提出了ATRNN网络。该网络使用长短期记忆结构(LSTM)作为RNN隐藏层的基本单元,可以处理任意长度的语义信息。网络通过引入Dropout机制,避免网络训练中的过拟合现象,提升训练效果。为了评估模型效果,文中在NLPCC的开放数据集上进行测试。相较于RNN网络,在正面情绪文本上,准确率、召回率和F1可以提升3.3%,1.7%和2.5%;在负面情绪文本上,可以提升4.4%,4.5%和4.4%。
1