西门子200Smart系列PLC是一款广泛应用的微型控制器,尤其在自动化设备和工业生产线上,它提供了丰富的功能,包括处理模拟量输入/输出。本文将详细解析如何在200Smart PLC中添加和使用模拟量库scale+,以实现更精确的数据转换和控制。 模拟量库scale+在西门子200Smart系统中扮演着关键角色,它允许用户对采集到的模拟量数据进行标度转换,从而将其转换为实际的工程单位。例如,将0-10V电压信号转换为0-100℃的温度值。这个过程包括了数据的采集、线性化以及与实际物理量的映射。 添加库scale+的步骤如下: 1. **打开编程软件**:确保已经安装了西门子的Step 7 Micro/WIN SMART编程软件,并用它连接到你的200Smart PLC。 2. **创建新项目**:在软件中新建一个项目,选择对应的PLC型号,如CPU 224 SP SMART PN。 3. **导入库文件**:从"scale.smartlib"文件中,找到所需的模拟量库scale+。这个库文件通常包含了预定义的模拟量处理函数块。点击“插入”菜单,选择“库”,然后导入"scale.smartlib"。 4. **添加库到项目**:在弹出的库选择窗口中,找到并选中"scale+"库,点击“确定”将其添加到项目中。 5. **配置库**:在程序编辑器中,双击导入的"scale+"库,会打开配置界面。这里需要设置输入和输出参数,比如模拟量输入通道、模拟量输出通道、转换系数等。 6. **创建数据块**:为了存储转换参数,你需要创建一个新的DB(数据块)。在项目树中右键单击“DB”,选择“添加新块”,为模拟量库分配所需的存储空间。 7. **连接I/O**:在OB1(主程序)或适当的FB(功能块)中,将模拟量输入和输出的地址与"scale+"库连接。通过指令调用库中的函数块,并将DB块作为参数传递。 8. **编写程序逻辑**:根据实际需求,编写程序逻辑来读取模拟量输入,调用"scale+"库进行转换,然后将结果写入模拟量输出。 9. **测试与调试**:下载程序到PLC后,通过监控和调试功能验证模拟量库scale+是否按预期工作。确保输入和输出值正确无误。 10. **保存与备份**:记得保存项目,并将程序和配置文件备份,以便日后查阅或恢复。 以上就是西门子200Smart模拟量库scale+的添加及使用步骤。通过这个过程,用户可以轻松地处理模拟量信号,实现更复杂的控制策略。"添加库scale步骤.pdf"文档应该提供了详细的图文教程,如果在实践中遇到任何问题,可以参考该文档或者寻求相关技术论坛的帮助。在学习和应用过程中,不断实践和理解,将有助于提升你的200Smart PLC编程技能。
2024-09-05 14:33:21 153KB 课程资源
1
水下爆炸的AUTODYN模拟分析研究,孙学武,,利用AUTODYN仿真程序对TNT水下爆炸的峰值压力进行模拟,分析了状态方程和网格密度不同对数值模拟的影响,得到了良好精度且计算速度�
2024-09-05 10:59:18 433KB 首发论文
1
面具magisk开启root,雷电模拟器上模拟真机环境。该压缩包,包括了模拟器(雷电模拟器9.exe),面具,RE管理器(Root_Explorer-v4.10.3-by_Alphaeva.apk),机型模组(iPhone12机型模块_magisk,LSPosed-v1.8.6-6909-zygisk-release,OPPOR9s机型模块_magisk,OXF-AN00机型模块_magisk,SM-N9760机型模块_magisk,vivoPD1728机型模块_magisk)。 A 安装面具 B 刷入机型压缩包,重启生效 C 机型更改app 可以制作机型压缩包,可以导出云机型压缩包
2024-09-05 07:30:31 31.45MB
1
安装mysql时所需的环境配置文件,mysql5.7.x以及mysql8.0.x版本在windows系统安装时会所需要的dll文件安装mysql时所需的环境配置文件,mysql5.7.x以及mysql8.0.x版本在windows系统安装时会所需要的dll文件
2024-09-01 21:53:47 13.69MB mysql dll资源包
1
《ANSYS_LS_DYNA模拟鸟撞飞机风挡的动态响应》 鸟撞问题在飞机设计中至关重要,尤其是在飞机起飞和降落时,高速运动的飞机与鸟类相撞可能导致严重损伤,甚至造成机毁人亡的灾难。特别是飞机的前风挡部分,由于迎风面积大,成为鸟撞概率较高的区域,而风挡玻璃的强度相对较低,因此对风挡受鸟撞冲击的模拟分析显得尤为必要,以提升飞行安全性。 早期的抗鸟撞设计主要依赖实验方法,但随着计算机技术和有限元数值计算理论的发展,现在越来越多地采用数值计算来分析鸟撞问题。目前的有限元模型主要分为解耦解法和耦合解法。解耦解法将鸟撞冲击力作为已知条件,单独求解风挡的动态响应,但鸟撞载荷模型的不确定性会影响求解精度。耦合解法则考虑碰撞接触,通过协调鸟体与风挡接触部位的条件,联合求解,能更直观地模拟整个鸟撞过程。本文采用ANSYS_LS_DYNA软件,建立鸟撞风挡的三维模型,研究鸟撞风挡的动态响应特征。 在建立有限元模型时,使用ANSYS软件,简化了计算过程,忽略了对风挡动态响应影响不大的结构因素,如机身、后弧框和铆钉等,将其替换为边界固定。风挡结构为圆弧形,材料为特定型号的国产航空玻璃,鸟撞击点设在风挡中部,撞击角度为29°。选用LS-DYNA材料库中的塑性动力学材料模型,破坏准则设定为最大塑性应变失效模式,当材料塑性应变达到5%时材料破坏。 鸟体的模拟是鸟撞分析的一大挑战,由于真实鸟体的本构特性难以准确描述,通常采取弹性体、弹塑性体或理想流体等简化模型。本文中,鸟体被简化为质量1.8kg、直径14cm的圆柱体,材料选用弹性流体模型。 计算结果显示,当鸟撞速度达到540km/h(相对于风挡的绝对速度)时,风挡的后弧框处有效塑性应变达到5%,风挡破坏。据此,计算得出风挡的安全临界速度为150m/s。在这一速度下,风挡后弧框处首先发生破坏,成为结构弱点。撞击时的最大应力主要集中在后弧框及其下方,而非撞击点。 此外,鸟撞还会导致风挡结构产生位移。风挡下方通常布置有精密仪器,因此必须考虑鸟撞引起的位移情况。鸟体撞击后在风挡上滑行,挤压风挡表面,产生较大位移。计算表明,在150m/s的撞击速度下,最大位移可达38mm,位于撞击点和后弧框之间。风挡表面位移随着时间呈现出先向下位移,然后因弯曲波反弹而振荡的行为。 总结来说,鸟撞风挡的最危险区域位于后弧框及其下方。不同结构的风挡有不同的鸟撞安全临界速度、最大位移和撞击时间。对于本文的风挡模型,临界速度为450km/h,最大位移为38mm,撞击时间约为7ms。这些分析结果对于飞机设计改进和飞行安全性的提升具有重要指导意义。
2024-09-01 16:57:16 218KB dyna
1
QQNewsWindow是一款模仿QQ右下角新闻弹窗的软件开发项目,主要针对Windows操作系统,采用VC++编程语言实现。此项目提供了三种不同的风格,旨在帮助开发者或者用户自定义创建美观的弹窗界面,进行二次开发。以下是这个项目涉及的主要知识点: 1. **右下角弹窗机制**:在Windows系统中,这种类型的弹窗通常被称为托盘通知区域窗口,它位于任务栏右下角的图标区域。QQNewsWindow实现了类似的功能,可以在不干扰用户主工作区的情况下,以非模态的形式展示信息。 2. **仿QQ设计**:QQNewsWindow的设计灵感来源于腾讯QQ的新闻提示窗口,它不仅在外观上接近,而且在交互体验上也力求一致,为用户提供熟悉的使用感受。 3. **VC++编程**:VC++是Microsoft开发的C++集成开发环境,用于创建Windows桌面应用程序。在这个项目中,开发者使用VC++编写源代码,实现弹窗的创建、显示、隐藏以及与用户的交互功能。 4. **窗口界面设计**:项目包含了窗口界面的设计,这是Win32 API的应用,通过消息循环和窗口过程函数来处理用户输入和系统事件。开发者可能使用了资源编辑器来设计对话框模板,并编写代码实现动态效果和用户交互。 5. **Win32 API**:Win32 API是Windows平台的基础,提供了一系列函数来创建窗口、绘制图形、处理消息等。QQNewsWindow的实现离不开这些API函数,例如CreateWindow、ShowWindow、UpdateWindow等,它们构成了弹窗的基础结构。 6. **解决方案(.sln)文件**:MiniNews.sln是Visual Studio的解决方案文件,包含了项目的配置信息、工程结构和依赖项。使用这个文件,开发者可以导入到Visual Studio环境中,进行编译、调试和进一步开发。 7. **资源文件(如MiniNews.png)**:项目中的图像资源,如MiniNews.png,可能是弹窗的背景图片或图标,用于提升界面的视觉效果。开发者可能会用到GDI+或Direct2D等图形库来加载和显示这些资源。 8. **源代码文件(未列出具体名称)**:项目中的源代码文件可能包含主程序入口、窗口类定义、消息处理函数、样式切换逻辑等,是整个项目的核心部分。通过阅读和修改这些源码,开发者可以定制自己的弹窗功能,实现特定的需求。 通过学习和实践QQNewsWindow项目,开发者不仅可以掌握如何在Windows环境下创建右下角弹窗,还能深入了解VC++编程和Win32 API的使用,对于提升Windows桌面应用开发技能具有很高的价值。
1
标题中提到的“可模拟的无证书的两方认证密钥协商协议”,结合描述中的“研究论文”,可以得知本文是一篇学术论文,作者们提出了一个新的密钥协商协议模型,该模型的特点是无证书(certificateless)且可模拟(simulatable),应用于两方认证(two-party authenticated)。无证书意味着该协议不需要传统的公钥证书来验证用户身份,这与传统的使用公钥基础设施(PKI)或基于身份的密码学(identity-based cryptography)有所不同。传统的PKI方法存在证书管理的负担,而基于身份的密码学有密钥托管问题(key escrow problem)。 关键词包括信息安全性、协议设计、无证书密码学、认证密钥协商以及可证明安全性。这些关键词为我们展示了文章的研究领域和主要内容。信息安全性涉及保护数据和信息免遭未授权的访问、使用、泄露、破坏、修改、检查、记录或破坏,而协议设计是指制定协议以实现特定目标的过程,本论文中的协议目标就是密钥协商。 无证书密码学(CLC)是近来引入的一种密码学分支,旨在缓解传统公钥密码体系和基于身份的密码体系的局限性。无证书密码学方案通常包括一个半可信的密钥生成中心(KGC),它负责为用户生成部分私钥,用户结合部分私钥和自己选择的秘密值生成完整的私钥,这样既避免了密钥托管问题,又简化了证书管理。 认证密钥协商协议(AKA)是一种密钥协商协议的增强版,它能够防止主动攻击。与普通的密钥协商不同,AKA通常需要确保参与方的身份是真实可信的。AKA协议在设计时需要考虑到安全性、效率和实用性。为了保证协议的可模拟性,作者们必须证明在标准的计算假设(如计算性Diffie-Hellman(CDH)和双线性Diffie-Hellman(BDH))下,协议是安全的。 在论文的引言部分,作者们首先介绍了密钥协商(KA)的重要性,它作为一种基础的密码学原语,允许两个或更多的参与方在开放网络上协商出一个秘密的会话密钥。每个参与方都可以加密消息,只有特定的其他参与方才能解密。然后,作者介绍了认证密钥协商(AKA)的概念,这种协议在协商密钥的基础上增加了防止主动攻击的功能。为了达到这一目的,AKA可以通过公钥基础设施(PKI)或者基于身份的密码体系实现。然而,正如之前提到的,它们各自有其局限性。 接下来,作者们提出了一个新的AKA协议的安全模型,这个模型使用了无证书密码学。在这个模型的基础上,他们进一步提出了一个可模拟的无证书两方认证密钥协商协议。该协议的提出,旨在解决传统模型的缺陷,并通过证明安全性来展示其实用性。协议仅需要每个参与方进行一次配对操作和五次乘法运算,因此效率和实用性都较高。 在协议的安全性方面,作者们强调了安全性证明是在标准计算假设下完成的,这表明该协议在理论上是安全的。CDH和BDH假设都是在密码学中常用的困难问题,用于保证协议在面对计算攻击时的健壮性。 作者们指出,其协议之所以被称为“可模拟”的,是因为它能够提供一定程度的模拟能力,模拟者可以在不知道私钥的情况下,模拟协议执行的某些方面。这种能力在密码学协议中是很重要的,因为它可以用于实现一些高级别的安全属性。 通过对以上内容的解读,我们可以理解到这篇论文的研究价值所在:它提出了一种结合了无证书密码学优势和认证密钥协商功能的新协议,并且证明了该协议在理论上是安全的,同时在实践中也是高效和实用的。这对于解决现有认证密钥协商方案中的一些问题,比如证书管理和密钥托管,提供了新的思路。
2024-08-29 16:33:01 236KB 研究论文
1
《MFC版学生成绩管理程序详解》 MFC(Microsoft Foundation Classes)是微软提供的一套C++类库,用于构建Windows应用程序。在本项目中,“MFC版学生成绩管理程序”是一个基于Visual Studio 2008开发的简单应用,主要功能包括学生成绩的添加和删除操作。下面我们将深入探讨MFC、C++编程以及如何利用它们来构建这样的管理系统。 MFC是微软为C++程序员设计的Windows应用程序开发框架。它将Windows API进行了封装,提供了面向对象的接口,使得开发者可以更方便地创建窗口、菜单、对话框等用户界面元素,同时提供了事件驱动的编程模型,简化了Windows应用程序的开发流程。在MFC中,我们通常会用到CWinApp、CWnd、CDialog、CButton等基类,它们分别代表应用程序、窗口、对话框和按钮等核心组件。 在这个学生成绩管理程序中,开发者可能首先定义了一个CWinApp派生类,作为整个应用程序的入口点,负责初始化和关闭应用程序。然后,通过CDialog或CFormView类创建一个主界面,这个界面可能包含多个控件,如文本框用于输入学号和姓名,下拉列表选择科目,按钮执行添加和删除操作。 C++作为基础语言,为MFC提供了强大的支持。在C++中,我们可以利用类和对象的概念来设计数据结构,例如,可以定义一个Student类来存储学生的学号、姓名和各科成绩。同时,C++的函数成员和虚函数机制使得我们可以为每种操作(如添加、删除)定义相应的方法,实现业务逻辑。此外,C++的异常处理机制可以确保程序在遇到错误时能够优雅地退出,避免数据丢失。 在实现添加和删除功能时,开发者可能需要处理数据库操作。MFC提供了ADO(ActiveX Data Objects)库,用于与数据库进行交互。通过建立DAO(Data Access Object)或ODBC(Open Database Connectivity)连接,可以轻松读写数据库中的学生成绩。在这个程序中,可能会有一个数据库类,负责执行SQL语句,如INSERT和DELETE,来实现对数据库的增删操作。 除了基本功能外,为了提高用户体验,程序可能还包含了错误处理和用户反馈机制。例如,当用户尝试删除不存在的成绩时,程序会弹出一个对话框告知用户;在保存数据时,会检查网络连接和磁盘空间,以防止因外部因素导致的数据丢失。 MFC版学生成绩管理程序是一个结合了C++编程、MFC框架以及数据库操作的典型实例。它展示了如何利用面向对象的设计原则和Windows API的封装,构建出一个功能齐全、用户友好的桌面应用程序。对于学习Windows编程和MFC的初学者来说,这是一个很好的实践项目,能够帮助他们深入理解这些技术,并提升实际开发能力。
2024-08-29 14:59:20 7.27MB vc++
1
在IT领域,远程桌面功能是一种常见的技术,它允许用户通过网络连接到另一台计算机并进行交互操作。在Windows环境中,Microsoft提供了多种实现远程桌面的方法,其中之一是通过编程接口(API)来实现,如使用VC++(Visual C++)结合CSocket类。本文将深入探讨如何利用VC++和CSocket来构建一个简单的远程桌面系统。 了解VC++和CSocket。VC++是Microsoft开发的一种集成开发环境(IDE),主要用于编写Windows平台的应用程序,特别是那些基于C++语言的项目。而CSocket是MFC(Microsoft Foundation Classes)库中的一个类,用于处理基于TCP/IP协议的套接字通信,是实现网络编程的基础工具。 远程桌面功能的核心在于数据传输和屏幕更新。具体来说,客户端需要实时获取服务器端的屏幕图像,同时发送键盘和鼠标事件到服务器,以模拟用户在远程计算机上的操作。在VC++中,我们可以创建两个CSocket对象,一个用于发送数据,另一个用于接收数据。 1. **服务器端**: - 创建CSocket对象,绑定到特定的IP地址和端口号,监听客户端的连接请求。 - 当有新的连接时,接受连接,并为每个连接创建一个新的CSocket实例。 - 实现屏幕捕获功能,定期抓取服务器端屏幕的RGB像素信息,并编码成适合网络传输的数据格式,如JPEG或PNG。 - 将编码后的图像数据通过CSocket发送到客户端。 - 接收客户端发送过来的键盘和鼠标事件,模拟在服务器端的输入操作。 2. **客户端**: - 创建CSocket对象,连接到服务器的IP地址和端口。 - 实时接收服务器端发送的图像数据,解码后显示在本地的窗口上,模拟远程桌面。 - 监听用户的键盘和鼠标事件,将这些事件编码后发送到服务器。 在实现过程中,需要注意以下几点: - **数据编码与解码**:为了高效传输,需要对屏幕图像数据进行压缩编码,减少传输的数据量。同时,客户端接收到数据后,要进行解码并渲染到本地窗口。 - **同步与异步**:服务器端的屏幕更新和数据发送通常采用异步方式,避免阻塞其他任务。客户端也需要异步接收数据,防止因为等待数据而卡住用户界面。 - **错误处理**:网络通信中常遇到的问题包括连接断开、数据丢失等,需要适当的错误处理机制,如重连、重传等。 - **安全性**:由于涉及到远程控制,安全是必须考虑的因素。可以使用SSL/TLS协议加密通信,防止数据被窃取。 在实际项目中,可能还需要考虑性能优化、多线程支持、网络延迟等问题。通过不断迭代和优化,可以构建出稳定、高效的远程桌面应用。对于初学者,理解并实现这个过程是一个很好的学习机会,可以提升网络编程和GUI开发的技能。而Lelecode.com可能提供了一些示例代码或教程,帮助开发者更好地理解和实践这一技术。
2024-08-22 16:43:59 170KB VC++ 利用CSocket 远程桌面功能
1
STM32是一款基于ARM Cortex-M内核的微控制器,广泛应用于嵌入式系统设计中。在许多应用中,我们可能需要一种持久性的存储方案来保存数据,即使在电源关闭后也能保留这些数据。这时,我们可以利用STM32的内部Flash来模拟EEPROM的功能,因为EEPROM通常具有多次擦写能力,但成本较高且容量有限。本文将详细介绍如何使用STM32的Flash进行模拟EEPROM的数据读写。 了解STM32的Flash特性至关重要。STM32的Flash存储器是其非易失性内存的一部分,它可以在断电后保持数据,且可以进行编程和擦除操作。Flash的编程和擦除有不同的级别:页编程(通常几百字节)和块擦除(几千到几万字节)。因此,模拟EEPROM时,我们需要考虑这些限制,避免频繁的大范围擦除操作。 模拟EEPROM的基本思路是分配一段连续的Flash区域作为虚拟EEPROM空间,并维护一个映射表来跟踪每个存储位置的状态。以下是一些关键步骤: 1. **初始化**:设置Flash操作所需的预处理,如使能Flash接口、设置等待状态等。同时,确定模拟EEPROM的起始地址和大小,以及映射表的存储位置。 2. **数据读取**:当需要读取数据时,首先检查映射表中对应地址的状态。如果该位置未被使用,可以读取Flash中的原始数据;如果已使用,则直接返回缓存中的数据。 3. **数据写入**:在写入数据前,先对比新旧数据,如果相同则无需写入。如果不同,找到尚未使用的Flash页进行写入,更新映射表记录。如果所有页面都被使用,可以选择最旧的页面进行擦除并重写。注意,为了减少擦除次数,可以采用“写入覆盖”策略,即在写入新数据时,只替换旧数据的部分,而不是整个页。 4. **错误处理**:在编程和擦除过程中,要处理可能出现的错误,如编程错误、超时等。确保有适当的错误恢复机制。 5. **备份与恢复**:为了提高系统的健壮性,可以在启动时检查映射表的完整性,并在必要时恢复已知的合法数据。 压缩包中的“Flash存储数据程序”可能包含以下文件: - EEPROM模拟的C源代码:实现上述步骤的函数,包括初始化、读写操作等。 - 示例应用程序:展示如何在实际项目中调用这些函数,存储和读取示例数据。 - 配置文件:如头文件,定义Flash分区、映射表的大小和位置等。 - 编译脚本或Makefile:用于编译和烧录程序到STM32开发板。 通过这样的方法,开发者可以在不增加额外硬件成本的前提下,利用STM32的Flash高效地实现模拟EEPROM功能,满足对小容量、低频次写入需求的应用场景。在实际工程中,这种技术常用于存储配置参数、计数器或者设备序列号等数据。
2024-08-21 15:19:59 422KB stm32 flash eeprom
1