unity图表插件包 Graph and chart 最新版
2022-09-23 09:07:15 56.21MB unity webgl 图表插件
1
The fusion between graph theory and combinatorial optimization has led to theoretically profound and practically useful algorithms, yet there is no book that currently covers both areas together. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms is the first to present a unified, comprehensive treatment of both graph theory and combinatorial optimization. Divided into 11 cohesive sections, the handbook’s 44 chapters focus on graph theory, combinatorial optimization, and algorithmic issues. The book provides readers with the algorithmic and theoretical foundations to: Understand phenomena as shaped by their graph structures Develop needed algorithmic and optimization tools for the study of graph structures Design and plan graph structures that lead to certain desirable behavior With contributions from more than 40 worldwide experts, this handbook equips readers with the necessary techniques and tools to solve problems in a variety of applications. Readers gain exposure to the theoretical and algorithmic foundations of a wide range of topics in graph theory and combinatorial optimization, enabling them to identify (and hence solve) problems encountered in diverse disciplines, such as electrical, communication, computer, social, transportation, biological, and other networks. Table of Contents SECTION I - Basic Concepts and Algorithms CHAPTER 1 - Basic Concepts in Graph Theory and Algorithms CHAPTER 2 - Basic Graph Algorithms CHAPTER 3 - Depth-First Search and Applications SECTION II - Flows in Networks CHAPTER 4 - Maximum Flow Problem CHAPTER 5 - Minimum Cost Flow Problem CHAPTER 6 - Multicommodity Flows SECTION III - Algebraic Graph Theory CHAPTER 7 - Graphs and Vector Spaces CHAPTER 8 - Incidence, Cut, and Circuit Matrices of a Graph CHAPTER 9 - Adjacency Matrix and Signal Flow Graphs CHAPTER 10 - Adjacency Spectrum and the Laplacian Spectrum of a Graph CHAPTER 11 - Resistance Networks, Random Walks, and Network Theorems SECTION IV - Structural Graph Theory CHAPTER 12 - Connectivity CHAPTER 13 - Connectivity Algorithms CHAPTER 14 - Graph Connectivity Augmentation CHAPTER 15 - Matchings CHAPTER 16 - Matching Algorithms CHAPTER 17 - Stable Marriage Problem CHAPTER 18 - Domination in Graphs CHAPTER 19 - Graph Colorings SECTION V - Planar Graphs CHAPTER 20 - Planarity and Duality CHAPTER 21 - Edge Addition Planarity Testing Algorithm CHAPTER 22 - Planarity Testing Based on PC-Trees CHAPTER 23 - Graph Drawing SECTION VI - Interconnection Networks CHAPTER 24 - Introduction to Interconnection Networks CHAPTER 25 - Cayley Graphs CHAPTER 26 - Graph Embedding and Interconnection Networks SECTION VII - Special Graphs CHAPTER 27 - Program Graphs CHAPTER 28 - Perfect Graphs CHAPTER 29 - Tree-Structured Graphs SECTION VIII - Partitioning CHAPTER 30 - Graph and Hypergraph Partitioning SECTION IX - Matroids CHAPTER 31 - Matroids CHAPTER 32 - Hybrid Analysis and Combinatorial Optimization SECTION X - Probabilistic Methods, Random Graph Models, and Randomized Algorithms CHAPTER 33 - Probabilistic Arguments in Combinatorics CHAPTER 34 - Random Models and Analyses for Chemical Graphs CHAPTER 35 - Randomized Graph Algorithms: Techniques and Analysis SECTION XI - Coping with NP-Completeness CHAPTER 36 - General Techniques for Combinatorial Approximation CHAPTER 37 - ε-Approximation Schemes for the Constrained Shortest Path Problem CHAPTER 38 - Constrained Shortest Path Problem: Lagrangian Relaxation-Based Algorithmic Approaches CHAPTER 39 - Algorithms for Finding Disjoint Paths with QoS Constraints CHAPTER 40 - Set-Cover Approximation CHAPTER 41 - Approximation Schemes for Fractional Multicommodity Flow Problems CHAPTER 42 - Approximation Algorithms for Connectivity Problems CHAPTER 43 - Rectilinear Steiner Minimum Trees CHAPTER 44 - Parameter Algorithms and Complexity
2022-09-22 08:37:18 18.54MB Graph Theory
1
Kinect VFX图形 这是一个如何将Kinect中的深度相机提要与Unity的VFX图形一起使用的示例。 该项目中的代码在很大程度上受到高桥敬二郎( Takahashi)的的启发。 要求 支持VFX图形的Unity版本 Unity软件包依赖于Kinect for Windows Unity软件包,可在单独下载。 如何使用 将Kinect VFX预制件添加到场景中。 在您的VFX图形中,使用KinectPointCloudMap渲染纹理作为“从地图设置位置”节点的输入。 KinectColorMap渲染纹理中提供了每个深度点的颜色数据。 另外,您也可以使用Kinect VFX映射的预制
2022-09-20 18:47:36 579KB unity unity3d kinect kinect-v2
1
是原作者英文文献
2022-09-19 11:05:51 141KB
1
纸 论文“深度融合集群网络”的源代码 图W.涂,周S.,刘X.,郭X,蔡Z. 被AAAI2021接受。 安装 克隆此仓库。 git clone https://github.com/WxTu/DFCN.git Windows 10或Linux 18.04 的Python 3.7.5 脾气暴躁的1.18.0 斯克莱恩0.21.3 火炬视觉0.3.0 Matplotlib 3.2.1 准备 我们总共采用了六个数据集,包括三个图形数据集(ACM,DBLP和CITE)和三个非图形数据集(USPS,HHAR和REUT)。 要在这些数据集上训练模型,请从(访问代码:4622)或下载它们。 代码结构与用法 在这里,我们提供了PyTorch中的深度融合集群网络(DFCN)的实现,以及DBLP数据集上的执行示例(由于文件大小的限制)。 该存储库的组织方式如下: load_data.py
1
in-painting, graph-cut, bilateral filtering on images,有注释,测试用例,函数
2022-09-14 22:01:12 18KB cut graph_cut graph_cut_matlab
EGNN-Pytorch(WIP) 中的实现。 最终可用于Alphafold2复制。 安装 $ pip install egnn-pytorch 用法 import torch from egnn_pytorch import EGNN layer1 = EGNN ( dim = 512 ) layer2 = EGNN ( dim = 512 ) feats = torch . randn ( 1 , 16 , 512 ) coors = torch . randn ( 1 , 16 , 3 ) feats , coors = layer1 ( feats , coors ) feats , coors = layer2 ( feats , coors ) # (1, 16, 512), (1, 16, 3) 带边 import torch from egnn_pytorch impo
1
MMS骨架 介绍 MMSkeleton是一个开源工具箱,用于基于骨骼的人类理解。 这是负责的项目的一部分。 MMSkeleton是根据我们的研究项目。 更新 [2020-01-21] MMSkeleton v0.7发布。 [2019-10-09] MMSkeleton v0.6发布。 [2019-10-08]支持示范动物园。 [2019-10-02]支持自定义数据集。 [2019-09-23]添加基于视频的姿势估计演示。 [2019-08-29] MMSkeleton v0.5发布。 产品特点 高扩展性 MMSkeleton提供了灵活的框架来系统地组织代码和项目,并具有扩展到各种任务
1
纯PB源码的graph曲线,比自带的曲线漂亮、灵活,易于开发、集成,需要的可以下载测试使用,有问题请及时反馈。。。
2022-09-01 14:05:39 27KB PB
1
nebula-graph-3.2.0.el7.x86_64 安装包,包含客户端console
2022-08-23 20:00:38 75.42MB nebula-graph nebula-graph-3.2 nebula-console
1