In this thesis we consider the problem of designing and implementing Model Predictive Controllers (MPC) for stabilizing the dynamics of an autonomous ground vehicle. For such a class of systems, the non-linear dynamics and the fast sampling time limit the real-time implementation of MPC algorithms to local and linear operating regions. This phenomenon becomes more relevant when using the limited computational resources of a standard rapid prototyping system for automotive applications. In this thesis we first study the design and the implementation of a nonlinear MPC controller for an Active Font Steering (AFS) problem. At each time step a trajectory is assumed to be known over a finite horizon, and the nonlinear MPC controller computes the front steering angle in order to follow the trajectory on slippery roads at the highest possible entry speed. We demonstrate that experimental tests can be performed only at low vehicle speed on a dSPACE rapid prototyping system with a frequency of 20 Hz. Then, we propose a low complexity MPC algorithm which is real-time capable for wider operating range of the state and input space (i.e., high vehicle speed and large slip angles). The MPC control algorithm is based on successive on-line linearizations of the nonlinear vehicle model (LTV MPC). We study performance and stability of the proposed MPC scheme. Performance is improved through an ad hoc stabilizing state and input constraints arising from a careful study of the vehicle nonlinearities. The stability of the LTV MPC is enforced by means of an additional convex constraint to the finite time optimization problem. We used the proposed LTV MPC algorithm in order to design AFS controllers and combined steering and braking controllers. We validated the proposed AFS and combined steering and braking MPC algorithms in real-time, on a passenger vehicle equipped with a dSPACE rapid prototyping system. Experiments have been performed in a testing center equipped with snowy and icy tracks. For both controllers we showed that vehicle stabilization can be achieved at high speed (up to 75 Kph) on icy covered roads. This research activity has been supported by Ford Research Laboratories, in Dearborn, MI, USA.
2021-04-05 03:59:19 4.1MB MPC
1
nonlinear model predictive control (第二版含MATLAB仿真实例)
2021-04-03 11:16:23 5.74MB MATLAB
1
[E.F.Camacho,C.Bordons,2nd,2004] 仅供学习交流
2021-03-29 10:43:29 3MB MPC 2nd 2004
1
这是一本专注于预测建模的数据分析书,意在为实践者提供预测建模过程的指导,比如如何进行数据预处理、模型调优、预测变量重要性度量、变量选择等。读者可以从中学到许多建模方法以及提高对许多常用的、现代的有效模型的认识,如线性回归、非线性回归和分类模型,涉及树方法、支持向量机等。第10章和第17章分别研究混凝土混合物的抗压强度和作业调度两个案例。   作者重实际应用,轻数学理论,从实际数据出发,结合开源软件R语言来求解实际问题,详细给出R代码和处理的步骤。R包AppliedPredictiveModeling包含书中使用的数据,以及可以用于重复书中每一章分析的R代码,让读者能在一定精度范围内重复本书的结果,并自然地将书中的预测建模方法应用到自己的数据上。章后附有习题,方便读者巩固所学。   这本业界互相推荐的好书,适合所有数据分析人员阅读。
2021-03-25 13:11:22 74.51MB apm
1
FinalProject_ML_Course_Jorge_Ballesteros_机器学习风力涡轮机的预测性维护
2021-03-21 09:11:45 2.08MB JupyterNotebook
1
Falcone的博士论文,主要介绍了自动驾驶车辆模型预测控制。学习过车辆自动驾驶控制方向的,都知道车辆模型预测控制是他在这个领域的开山之作。 很多资源是假的,这个是真的。
1
该存储库包含为Predictive Analytics编写的所有代码。
2021-03-02 16:07:33 137KB R
1
Building Predictive Models in R Using the caret Package
2021-03-02 09:01:25 506KB r语言
1
《Model Predictive Control: Theory and Design》这本书是国外大学学习模型预测控制(MPC)的指定教材,出版于2009年。
2021-02-28 11:03:46 2.64MB 教材
1