萤火虫优化算法(GSO)是一种计算多模函数多峰值问题的群智能算法,由模拟自然界中萤火虫发光的生物学特征发展而来。在GSO算法中,萤火虫根据自适应的感应决策范围寻找比自身荧光素高的萤火虫,并通过概率选择机制朝其运动,以实现寻优目的。简要阐述GSO算法基本原理,对算法各个参数进行分析说明,利用Matlab软件构建GSO算法在整个寻优过程中的可视化环境,并给出算法源代码。仿真实验首先实现了自适应感应决策范围更新过程,然后通过多模函数仿真示例测试了该方法的有效性,从而实现了利用萤火虫算法解决多模函数多峰值优化问题。