这是本人跑Meshroom时自己拍摄的数据集,一共34张图片,也是原帖所使用的数据集。
2022-12-27 19:26:17 86.23MB 三维重建
1
步骤超详细,亲测,成功!
2022-12-15 19:28:14 243KB 室内导航 三维重建 ORB_SLAM3 ORB_SLAM
1
3D重建:基于ElasticFusion的双目实时重建 ,内含代码和模型可以直接使用
2022-12-09 09:29:59 48.78MB 3D重建:基于ElasticFu 3D 重建
正电子发射断层扫描仪(Positron Emission Tomography, PET)是当前医学界公认的肿瘤、心脏、脑等疾病诊断与病理生理研究的重要方法。随着核医学影像设备的广泛应用和计算机技术的迅速发展,图像重建方法作为PET成像的一个关键环节,其研究工作也越发受到重视。 PET探测器检测注入人体的示踪剂在湮灭辐射过程中产生的射线,经过符合采集系统处理形成投影线,以SINO的方式存放于计算机硬盘中[1]。计算机调用图像重建模块,生成人体断层图像。目前,PET图像基础重建算法主要包括解析法和迭代法。 1. 解析法 解析法是以中心切片定理为基础的反投影方法,常用的是滤波反投影法(Filtered Back-Projection, FBP)。在FBP中,图像重建主要包含两个步骤:反投影和滤波。 我们在初中就已经学过投影与反投影的概念,从不同角度观察物体可以得到不同的信息,当我们从多种不同角度获取物体的投影,可以反向推出这个物体真实的形态。 图1 光线将物体的形状投射到一个平面称为投影 在成像原理上,PET和CT略有差异。CT是投射成像,X射线旋转360°,采集被扫描物体不
2022-12-07 13:26:59 3KB CT重建算法 matlab 编程 CT图像处理
1
稀疏角度CT生成python脚本(astra工具包)(可直接运行) 相对于MR,CT在参数及扫描方面并不是太难,但是CT的图像重建及各种算法则是非常难的,也是比较抽象的。这篇文章介绍CT图像重建算法等相关内容。 CT技术是CT诊断的基础,帮助医务工作者充分掌握CT技术是我们的责任和义务! CT基础知识 Image Reconstruction Method 图像重建算法 在上一期内容CT原理1中,我们主要介绍了X线与物质的作用,也就是X线的衰减是如何发生的,正是由于这种衰减的存在,X线才可以被用于CT成像,那么探测器获得的衰减信号最终是如何被转换成CT图像的呢?这就涉及到图像的重建算法了,所以今天我们接着X线的衰减,继续介绍CT图像重建的原理。 1 重建算法的分类 CT重建算法共有3类,如下图。 (1)反投影法 (2)迭代重建算法 (3)解析法:包括滤波反投影法和傅里叶变换法 其中(3)解析法中的A滤波反投影法是在(1)反投影法的基础上发展起来的,通过加入滤波函数解决了图像锐利度的问题,如下图,没有加入滤波函数(Filter Function)时重建的图
2022-12-07 13:26:54 2KB CT重建 稀疏角度CT 算法
1
ML-EM算法  EM算法(Expectation Maximization Algorithm,期望极大算法)是一种解决优化问题的迭代算法,用于求解含有隐变量的概率模型参数的极大似然估计(MLE)或极大后验概率估计(MAP)。EM算法是一种比较通用的参数估计算法,被广泛用于支持向量机(SMO算法)、朴素贝叶斯、GMM(高斯混合模型)、K-means(K均值聚类)和HMM(隐马尔可夫模型)的参数估计。 理解EM算法(例子)   在统计学中,概率用于在已知一些参数的情况下,预测接下来的所得到的结果;而似然性则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。   EM算法和极大似然估计的前提是一样的,都要假设数据总体的分布,如果不知道数据分布,是无法使用EM算法的。 三硬币模型   假设有3枚硬币A,B,C,这些硬币正面出现的概率分别是π \piπ,p pp和q qq。进行如下掷硬币试验:先掷硬币A,根据其结果选出硬币B或硬币C,正面选硬币B,反面选硬币C;然后掷选出的硬币,掷硬币的结果,正面记作1,反面记作0;独立重复n此试验,观测结果: 1 , 1 , 0 ,
1
深度学习CT重建算法技术文档 深度学习CT重建技术文档 目录 深度学习CT重建技术文档 1 一. 稀疏角度U-net+传统重建算法去伪影 1 1.1 U-net+FBP 2 1.2 U-net+ART 3 1.3 U-net+SART 4 1.4 U-net+ML-EM 4 1.5 U-net+OSEM 4 二. 稀疏角度U-net+mSTCT去伪影 4 三. U-net替代STCT逆希尔伯特变换 5 3.1五段直线扫描分别训练模型 5 3.1.1 STCT相关算法 5 3.1.2 U-net替代五段直线扫描分别训练模型 6 3.2 五段直线扫描合并训练模型 12 3.3 两种方法结果对比 15 四. 算法改进与提升 16 4.1 增加掩膜 16 五. 附件 17 稀疏角度U-net+传统重建算法去伪影 本小节前三种算法是代数类重建算法,后两种是统计迭代类算法,所有算法均已用matlab复现,但由于需结合U-net(python环境)进行伪影去除,所以这里在前三种方法上利用的是ASTRA工具包的python版本产生稀疏角度数据,后两种由于ASTRA包中没有,所以采用
2022-12-06 17:26:38 6.62MB CT重建算法 FBP ART SART
1
论文Deep_Convolutional_Neural_Network_for_Inverse_Problems_in_Imagin
2022-12-06 17:26:37 20.93MB CT图像重建 CT算法研究 论文
1
CT重建过程中的各种工具类算法(包括产生稀疏视角图像、各种格式数据变换)
1
关于CT重建,如今已经有许多可用的开源工具箱来实现,这避免了花大量时间研究算法并重现,在实际应用中非常便捷。比如ASTRA工具箱,不仅涵盖二维、三维重建,可GPU加速,而且兼容MATLAB、Python以及Windows、Linux系统,适合各类应用场景。然而,网上关于该工具箱的介绍很少,所以在此做一些简单介绍,以便参考和回顾。 一、官网与下载 工具箱的官网为: The ASTRA Toolbox ​www.astra-toolbox.com/ 在Downloads模块即可下载最新版本的工具箱: 下载之后,还需注意在不同环境下的配置不同,比如我安装的Windows下的Matlab环境,就至少需要配置Visual Studio 2015,且做GPU加速需要CUDA8.0,等等。这些都可以在Documentation-Installation instructions部分了解。 二、工具箱学习 ASTRA工具箱提供大量案例,而且官网Documentation部分详细讲解了所有的调用方式。 分别针对投影对象、投影光束、算法等,都有不同的工具来初始化、重建图像等,大概看懂案例即可熟
2022-12-06 15:25:52 223.7MB CT重建 CT算法 工具箱
1