MATLAB实现CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测, 数据为多变量时间序列数据,多输入单输出,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件,运行环境MATLAB2020b及以上,运行主程序CNN_BiLSTM即可。
光伏电站短期发电功率预测方法研究,新的算法仿真
1
MATLAB实现CNN-LSTM神经网络多输入回归预测(完整源码和数据) CNN-LSTM神经网络,卷积长短期记忆神经网络多输入回归预测 数据为多输入回归数据,输入12个特征,输出1个变量。 运行环境MATLAB2020b及以上。
传统光伏发电功率预测存在因气象因素特征提取不综合不精确而导致预测精度不高的问题. 为了充分挖掘气象因素对光伏出力的影响, 并有效利用深度学习技术在非线性拟合方面的优势, 本文提出了一种基于气象因素充分挖掘的双向长短期记忆(Bi-directional Long Short Term Memory, BiLSTM)网络光伏发电短期功率预测方法. 在对原始数据进行异常值及标准化处理的基础上, 采用K近邻算法(K-Nearest Neighbor, KNN)在外界温度、湿度、压强等诸多气象因素中充分挖掘影响光伏出力的关键因素, 重构多元数据序列, 并在探索输入层时间步长、模型层数及每层维数等超参数的合理设置方案的基础上, 构建BiLSTM网络模型, 实现光伏发电短期功率的高精度预测. 仿真结果表明, 与KNN、深度信念网络(DBN)、BiLSTM、PCA-LSTM等经典方法比较, 所提KNN-BiLSTM方法具有更高的预测精度.
1
建立了端到端深度网络模型M-B-LSTM,以解决了深度网络学习和预测流量随机性和分布不平衡过程中的不确定性和过拟合问题。
2022-10-16 21:05:03 5.26MB 深度学习
1
MATLAB实现CNN-LSTM时间序列预测(完整源码和数据) 卷积长短期记忆神经网络时间序列预测,数据为单变量时间序列数据, 运行环境MATLAB2020b及以上。
电力系统短期负荷预测:输入每小时ENTSO-E负载,输入ENTSO-E每小时负荷、天气和风度 Models NRMSE MAE MAPE HMM 0.255 1058.75 0.148 ARIMA 0.198 807.97 0.108 DWT-ARIMA 0.0805 565.91 0.0876
1
MATLAB实现TPA-BiLSTM时间注意力机制双向长短期记忆神经网络时间序列预测(完整源码和数据) 数据为多变量时间序列数据,多输入单输出 运行环境MATLAB2020b及以上,运行主程序TPAMain即可。
准确的交通流量预测是智能交通系统中的关键问题。在分析支持向量机SVM回归估计方法参数性能的基础上,提出了粒子群算法PSO优化参数的PSO-SVM短期交通流预测模型。模型利用支持向量机具有结构风险最小化的特性和粒子群算法快速全局优化特点,实现了数据降维并且保持了交通流序列的特征,因此可以高效地预测交通流量。用G107国道现场采集的数据仿真表明了该模型的有效性,预测平均误差为3.4%。
2022-10-04 10:09:55 886KB 论文研究
1