1)整个yolov5模型 2)二维码数据集 3)二维码训练得到的模型 4)模型转成onnx格式,在opencv dnn下调用 5)二维码检测识别程序
2024-05-20 11:52:49 146.92MB opencv yolov5 目标检测 二维码识别
1
采用tensorflow(python)实现 YOLO v3目标检测算法,可对图片,包含图片的文件夹、摄像头和视频进行对如下20个类物体的检测。
2024-05-19 16:27:00 259KB tensorflow python 目标检测 yolo
1
yolov5 yolov5_使用yolov5+deepsort进行无人机目标跟踪
2024-05-18 15:11:55 83.69MB yolov5 deepsort 目标检测
1
该资源详细解读可关注博主免费专栏《论文与完整程序》21号博文 大量电动汽车投入运营,其充放电将对电力系统产生很大影响。针对电动汽车分层分区域控制模式,重点分析底层控制中心接收到上级调度指令后如何协调与控制本区域内电动汽车的充放电行为。考虑电动汽车充放电地点的分散性和时间的随机性,提出了一种区域内电动汽车充放电控制策略。通过仿真计算,得到了该控制方式下区域内电动汽车充放电对负荷曲线的影响。电动汽车充电负荷作为可调度负荷,可减小负荷高峰期的供电压力,提高负荷低谷时的机组利用率,提高电网的经济运行水平,其优化调度对电网意义重大。基于部分电动汽车用户实际中不接受电网调度的事实,以所有电动汽车用户的充电成本之和最小、电网负荷方差最小为目标,以用户充电需求等为约束,建立了电动汽车负荷的多目标优化调度模型。模型在保证用户充电获益的同时优化电网运行。采用改进粒子群算法求解模型,仿真结果表明,用户充电选择将影响充电调度方案、用户经济性和电网运行安全。在充电调度中,需要考虑用户的充电选择。
2024-05-17 13:54:38 581KB 毕业设计
079面向削峰填谷的电动汽车多目标优化调度策略.zip
2024-05-12 16:51:03 14.5MB
1
网页版乳腺癌计算机辅助诊断系统
2024-05-12 02:11:42 63.91MB 目标检测
1
本文来自cnblogs,本文介绍基于区域提名的方法,包括R-CNN、SPP-net、FastR-CNN、FasterR-CNN、R-FCN和端到端(End-to-End)的目标检测方法,包括YOLO和SSD。普通的深度学习监督算法主要是用来做分类,如图1(1)所示,分类的目标是要识别出图中所示是一只猫。而在ILSVRC(ImageNetLargeScaleVisualRecognitionChallenge)竞赛以及实际的应用中,还包括目标定位和目标检测等任务。其中目标定位是不仅仅要识别出来是什么物体(即分类),而且还要预测物体的位置,位置一般用边框(boundingbox)标记,如图1(2)
2024-05-11 17:54:37 605KB
1
以粒子群优化算法为例,测试函数为CEC2020单目标函数,运行没问题。 资源包括:CEC2020单目标测试函数+CEC2020单目标测试函数的原始paper+PSO算法
2024-05-10 21:59:18 1.39MB
1
基于YOLOv8的SAR图像目标检测系统,覆盖数据制作、数据可视化、模型训练/评估/推理/部署全流程,最后通过 Gradio 界面进行展示。 本次分享将带领大家熟练掌握 YOLOv8 的使用,并根据自己的任务训练一个特定场景的检测器,本文将重点讲解 YOLOv8 训练框架中数据集的格式、配置文件等细节,让小白少走弯路,跟着走就能轻松训练好自己的检测器,并基于 Gradio 搭建一个简单的应用。
2024-05-08 21:26:16 212.63MB 目标检测 数据集
1
这个是从网上整理的资源,用于目标检测的摔倒检测数据集,格式是voc数据格式。 由于是网上整理的数据集,用于学习和研究。
2024-05-08 10:14:51 367.11MB 目标检测 数据集 voc格式 深度学习
1