本课题主要从信号与系统、电路分析与设计、电路仿真等方面对方波分解与合成的进行电路验证。 详细内容如下: https://blog.csdn.net/JK7942/article/details/130208526 方波的合成:采用理想信号作为输入激励,采用加法电路对方波进行合成,方波频率以学号为要求。 方波的产生:采用NE555或其他方案产生方波,以学号为频率要求。 误差放大:原始方波与合成的方波进行对比,并进行误差放大,估测两者的误差。
2024-07-22 16:36:18 666KB
1
本设计中的抗SEU存储器的设计可通过ACTEL的ProAsic系列A3P400 FPGA实现,并可使用与其配套的Liber08.5 EDA工具进行代码的编辑和原理图的绘制,并进行功能仿真与电路的综合。
2024-07-17 19:36:02 94KB FPGA FPGA
1
LENOVO Y410P NM-A031 电路原理图 维修这款电脑主板需要原理图的可以下载
2024-07-13 10:53:00 1.48MB LENOVO Y410P 电路原理图
1
电路综合-基于简化实频的集总参数电路匹配三部曲: [电路综合-基于简化实频的集总参数电路匹配1-得出数值解](https://blog.csdn.net/weixin_44584198/article/details/134443687) [电路综合-基于简化实频的集总参数电路匹配2-得出解析解并综合](https://blog.csdn.net/weixin_44584198/article/details/134460547) [电路综合-基于简化实频的集总参数电路匹配3-将任意阻抗用集总参数匹配至归一化阻抗](https://blog.csdn.net/weixin_44584198/article/details/134466026)
2024-07-11 09:47:54 70KB matlab
1
nRF24L01可工作于2.4 GHz~2.5 GHz ISM 频段, 该收发器内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块, 是一款集成度较高的无线收发器。
2024-07-10 20:09:46 29KB 硬件设计
1
**指针式万用表电路仿真与讲解教程** 在电子工程和电气技术领域,了解和掌握万用表的使用是至关重要的。指针式万用表作为传统的测量工具,能够测量电压、电流和电阻,是电路分析和故障排查的基础设备。本教程将通过Multisim这一强大的电路仿真软件,详细介绍如何构建和仿真指针式万用表电路,以加深对万用表工作原理的理解。 Multisim是一款广泛应用于教育和工业界的电路设计和仿真软件,它提供了直观的图形化界面,使用户可以轻松搭建电路,并进行实时仿真,观察电路的动态行为。在本教程中,我们将利用Multisim的特性,模拟指针式万用表在交流(AC)、直流(DC)和欧姆测量模式下的工作状态。 我们将构建基础的指针式万用表电路,包括电流表头、分压电阻网络和选择开关。电流表头是万用表的核心部件,它具有高内阻,能直接连接到被测电路而不影响其正常工作。在AC/DC模式下,我们需要考虑交流电流和直流电流的差异,选择合适的表头和耦合方式。在Multisim中,我们将设置不同的电压源,模拟不同类型的输入信号,观察指针的偏转情况。 接着,我们会转向欧姆表的仿真。欧姆表是通过内部电池和固定电阻来测量电阻的。在Multisim中,我们需要设定内部电池的电压,然后通过开关切换到欧姆测量模式。当选择欧姆测量时,表头与待测电阻并联,通过表头的偏转读取电阻值。在这个过程中,我们将学习如何调整内部电阻,以适应不同量程的测量需求。 在仿真过程中,我们还将讨论以下关键知识点: 1. **电路元件的选择与配置**:理解如何正确选择电流表头、分压电阻和开关,以及它们在电路中的作用。 2. **电流与电压的转换**:探讨如何通过电阻网络将电流信号转换为电压信号,以便于表头的读取。 3. **测量误差分析**:分析电路设计可能引入的测量误差,如非线性响应、读数精度等。 4. **仿真技巧**:学习如何使用Multisim进行电路分析,如使用虚拟仪表进行实时测量,使用示波器查看波形等。 5. **安全注意事项**:强调在实际操作中使用万用表的安全规则,如正确选择量程、避免短路等。 通过这个实践教程,读者不仅可以深化对指针式万用表工作原理的理解,还能提升在Multisim中的电路设计和仿真技能。对于电子工程初学者和专业技术人员来说,这是一次极好的学习和提高的机会。通过实际操作,你将能够更好地应对各种电路测量任务,为你的学习和职业生涯奠定坚实的基础。
2024-07-10 16:49:22 1.93MB 开发技术
1
开关稳压电源是一种高效能的电源转换设备,广泛应用于各种电子设备中,为系统提供稳定电压。本资料主要探讨了开关稳压电源的基本原理、设计方法以及实用电路,旨在帮助读者深入理解并掌握这一关键技术。 一、开关稳压电源原理 开关稳压电源的工作原理基于开关控制和电能变换。它不同于传统的线性稳压电源,后者通过调整负载上的电压来维持输出稳定,而开关稳压电源则通过高频开关操作,利用变压器或电感进行能量传递,实现输入到输出的电压转换。其核心是PWM(脉宽调制)控制器,通过改变开关元件(如MOSFET或IGBT)的导通时间比例,来调节输出电压。这种工作方式使得开关电源具有更高的效率,尤其在大功率应用中更为明显。 二、设计考虑因素 1. 额定功率:首先需要确定电源需要提供的最大功率,这将影响选择元器件的规格。 2. 输入电压范围:根据应用需求确定电源的输入电压范围,确保在不同电压下都能稳定工作。 3. 输出电压和电流:明确输出电压值和最大电流,这是设计的基础。 4. 效率:优化设计以达到高效率,减少能源浪费。 5. 安全标准:符合相关的电磁兼容性(EMC)和安全标准,如UL、CE等。 6. 尺寸和重量:在满足性能要求的同时,考虑产品的尺寸和重量,适应不同应用场景。 三、开关稳压电源类型 1. Buck(降压)变换器:输入电压高于输出电压,通过减小开关周期的占空比降低输出电压。 2. Boost(升压)变换器:输入电压低于输出电压,通过增加占空比提升输出电压。 3. Buck-Boost(升降压)变换器:可实现输入电压高于或低于输出电压的转换。 4. Cuk、Sepic、Zeta等其他拓扑:适用于更复杂的电压转换需求。 四、实用电路 1. 开关电源的启动电路:确保电源在上电时能正常启动。 2. 恒流驱动电路:保持输出电流恒定,防止过载。 3. 热保护电路:当电源温度过高时,自动关闭电源以保护元器件。 4. 反馈电路:用于检测输出电压,并调整开关元件的导通时间,保持输出电压稳定。 5. 隔离电路:在高压和低压之间提供电气隔离,提高安全性。 五、设计流程 1. 需求分析:明确电源的各项性能指标。 2. 选择拓扑结构:根据应用需求选择合适的开关电源拓扑。 3. 元器件选型:根据计算结果选择合适的开关元件、电感、电容等元器件。 4. 设计PCB布局:考虑电磁兼容性和热设计,优化电路板布局。 5. 建立仿真模型:使用电路仿真软件验证设计的可行性。 6. 制作样机并测试:制作电路板,进行实际测试,调整参数以满足设计要求。 7. 优化与验证:根据测试结果优化设计,确保满足所有性能指标。 通过以上对开关稳压电源的原理、设计和实用电路的介绍,读者可以对这一领域有较全面的理解,为进一步学习和实践打下坚实基础。详细内容请参考《开关稳压电源--原理、设计与实用电路.pdf》文档。
2024-07-10 12:58:38 7.13MB 开关稳压电源
1
"揭秘STM32的心电采集仪电路原理" 本文设计了以STM32为控制核心,AD620和OP07 为模拟前端的心电采集仪,本设计简单实用,噪声干扰得到了有效抑制。本设计的关键部分是心电采集电路,它是心电采集仪的核心部分,心电信号属于微弱信号,其频率范围在0.03~100 Hz 之间,幅度在0~5 mV 之间,同时心电信号还掺杂有大量的干扰信号,因此,设计良好的滤波电路和选择合适的控制器是得到有效心电信号的关键。 主控模块电路设计的核心是STM32F103VET 单片机,它是ST 意法半导体公司生产的32 位高性能、低成本和低功耗的增强型单片机,具有100 个I/O 端口和多种通信接口。前置放大电路的设计是模拟信号采集的前端,也是整个电路设计的关键,它不仅要求从人体准确地采集到微弱的心电信号,还要将干扰信号降到最低,因此选择合适的运算放大器至关重要。在这里选择了AD620实现前置放大,AD620具有高精度、低噪声、低输入偏置电流低功耗等特点,使之适合ECG 监测仪等医疗应用。 带通滤波器的设计是为了从前置放大电路输出的心电信号中滤除干扰信号和基线漂移等干扰成分,所需采集的有用心电信号在0.03~100 Hz 范围之间,因此需设计合理的滤波器使该范围内的信号得以充分通过,而该范围以外的信号得到最大限度的衰减。在这里采用具有高精度,低偏置,低功耗特点的两个OP07 运放分别组成二阶有源高通滤波器和低通滤波器。 本设计实现的是以STM32为控制核心,以AD620,OP07 为模拟信号采集端的小型心电采集仪,该设计所测心电波形基本正常,噪声干扰得到有效抑制,电路性能稳定,基本满足家居监护以及病理分析的要求,整个系统设计简单,成本低廉,具有一定的医用价值。 知识点: 1. 心电采集仪的设计原理和技术应用 2. STM32 单片机的应用和特点 3. AD620 运算放大器的应用和特点 4. OP07 运算放大器的应用和特点 5. 滤波电路的设计原理和技术应用 6. 心电信号的采集和处理技术 7. 医疗电子技术的应用和发展前景 8. 电路设计的稳定性和可靠性分析 9. 微弱信号的采集和处理技术 10. 医疗电子设备的设计和开发技术
2024-07-10 12:08:47 164KB STM32 信号处理 控制电路 电路设计
1
《16x32 LED点阵屏电路设计详解》 LED点阵屏作为一种常见的显示设备,广泛应用于广告、信息展示、艺术创作等多个领域。本文将深入解析一款基于51单片机控制的16x32 LED点阵屏的电路原理,以及其核心组件74HC595和74HC154芯片的功能与应用。 我们来理解16x32 LED点阵屏的基本结构。这款点阵屏由16行、32列的LED像素组成,总共包含512个独立可控的LED灯。每个像素由红、绿、蓝三种颜色的LED灯珠组成,通过不同颜色的组合实现色彩丰富的显示效果。点阵屏的每一行和每一列都需要单独的控制信号,以便精确控制每个LED的亮灭状态。 接下来,我们重点探讨51单片机在其中的角色。51单片机是一款广泛应用的8位微处理器,具有丰富的I/O口资源,能够轻松处理点阵屏所需的复杂控制任务。它通过编程来控制每个LED的状态,实现动态扫描和数据传输,以达到显示各种图案和文字的目的。 74HC595是常用的串行到并行转换器,也是51单片机控制LED点阵屏的关键芯片之一。它的功能是接收51单片机发送的串行数据,并将其转化为并行输出,从而驱动点阵屏的列线。74HC595拥有8个输出引脚,可以同时驱动8个LED列,通过级联多片74HC595,就能实现对32列LED的控制。 另一款重要的芯片74HC154则是数据选择器/多路复用器,用于控制点阵屏的行线。74HC154可以接收多个输入信号,根据这些信号的组合选择一个输出。在16x32的点阵屏中,通常需要四片74HC154来控制16行LED。通过单片机改变74HC154的控制信号,就可以切换不同的行,实现逐行点亮或熄灭LED,从而达到显示的效果。 在实际应用中,为了确保点阵屏的稳定运行,还需要考虑电源管理、驱动电路设计、抗干扰措施等细节问题。例如,合理布局电路板以减小电磁干扰,选用合适的限流电阻以保护LED,以及设置合适的扫描频率以保证显示流畅性。 此外,文中提到的“提供仿真”意味着设计者可能提供了电路的仿真模型,这对于理解和调试电路设计非常有帮助。而“实物等”则表明可能包括实际制作的硬件示例,这有助于实践操作和验证理论知识。 16x32 LED点阵屏的电路设计涵盖了单片机控制、数字逻辑、接口通信等多个方面的知识,通过理解和掌握这些原理,可以为设计更复杂的LED显示系统打下坚实的基础。无论是电子爱好者还是专业工程师,深入研究这一主题都将受益匪浅。
2024-07-09 16:46:37 146KB 16x32点阵
1
斩控式交流调压也称交流PWM调压。 使用脉宽调制(PWM)控制能提高可控整流器的输人功率因数。自然换流晶闸管变换器会在负载和电源端产生大量的低次谐波,且其输入功率因数较低。利用PWM方式对电压控制器进行控制,能极大提高其运行性能。开关V1,和V2在输人交流的正半周和负半周都会分别开关多次。V3和V4分别在V1和V2关断期间为负载提供续流回路。其二极管的作用是防止器件上承受反压。
2024-07-08 20:09:35 39KB 电力电子技术
1