Caltech-101 Dataset 是由 101 个类别的对象图片组成的数据集,它主要用于目标识别和图像分类。不同类别有 40 至 800 张图片,每张图片的大小在 300 * 200 像素,且数据集的发布者均已标注对应的目标以供使用。
该数据集由加州理工学院的李菲菲、马克安德烈托和 Marc’Aurelio Ranzato 于 2003 年 9 月收集,相关论文有《Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories》、《One-Shot learning of object categories》。
2022-07-13 11:05:32
131.06MB
数据集