EE369 机器学习大作业
2024-06-10 15:07:13 50.86MB
1
人体CT扫描段层DCM格式,可用于机器学习/人工智能,练习参考。
2024-06-08 17:50:59 9.29MB 机器学习
1
机器学习数学基础(线性代数、概率与信息论、数值计算),机器学习常用方法、深度学习和具体应用
2024-06-07 20:12:13 29.44MB 机器学习
1
目录 介绍 该存储库表示在开发用于材料科学中的机器学习的图形网络方面的工作。 这项工作仍在进行中,到目前为止,我们开发的模型仅基于我们的最大努力。 我们欢迎任何人使用我们的代码和数据来构建和测试模型的努力,所有这些代码和数据都是公开的。 也欢迎任何意见或建议(请在Github Issues页面上发帖。) 使用我们的预训练MEGNet模型进行晶体特性预测的Web应用程序可从。 MEGNet框架 MatErials图形网络(MEGNet)是DeepMind图形网络[1]的实现,用于材料科学中的通用机器学习。 我们已经证明了它在分子和晶体的广泛属性中实现非常低的预测误差方面所取得的成功(请参阅 [
2024-06-06 11:20:22 39.25MB machine-learning deep-learning tensorflow keras
1
基于高通量计算与机器学习的材料设计方法与软件的开发与应用 本资源摘要信息将详细介绍基于高通量计算与机器学习的材料设计方法的原理、实现过程和应用实践,以及与之相应的软件的开发与应用。 一、基于高通量计算的材料设计方法 高通量计算在材料设计中的应用主要体现在以下几个方面:分子模拟、计算设计和材料性质预测。通过高通量计算,可以对材料的分子结构和化学性质进行高精度的计算,帮助研究人员深入了解材料的本质;计算设计可以通过计算机模拟和优化材料的设计方案,提高材料的性能和稳定性;材料性质预测则可以通过对材料的各种性质进行预测,为新材料的研发提供理论指导。 二、基于机器学习的材料设计方法 机器学习在材料设计中的应用也包括算法、模型和数据集等方面。机器学习算法包括神经网络、决策树、支持向量机等多种类型,可以根据不同的材料设计和预测需求进行选择;模型方面,主要包括各种统计算法和深度学习模型,如卷积神经网络、循环神经网络等;数据集则是机器学习算法发挥作用的关键,需要收集和整理大量关于材料性质、结构、性能等方面的数据。 基于机器学习的材料设计方法主要涉及模型建立、算法优化和数据集选择等方面。模型建立需要根据研究目标和数据特征选择合适的机器学习算法和模型;算法优化则需要对模型进行训练、调参、优化,以提高预测的准确性和效率;数据集选择则需要收集和整理大量与材料相关的数据,包括结构、性质、性能等方面。 三、软件的开发与应用 为了实现基于高通量计算与机器学习的材料设计方法,需要开发相应的软件工具。在需求分析阶段,需要明确软件的功能和用户需求,如材料性质预测、分子模拟等;在程序设计阶段,需要选择合适的编程语言和框架,如Python、C++等,并设计软件的基本架构和模块;在代码实现阶段,需要将算法和模型实现为具体的代码,并编写用户界面和文档。此外,还需要对软件进行测试和优化,确保其稳定性和性能达到预期。 四、结论 本资源摘要信息介绍了一种基于高通量计算和机器学习的材料设计方法,以及与之相应的软件的开发与应用。该方法结合了高通量计算在材料设计中的快速筛选和机器学习在预测新材料性质方面的优势,为材料设计提供了新的解决方案。通过这种方法,可以在短时间内筛选和优化大量的材料设计方案,从而提高材料的性能和稳定性,加速新材料的研发进程。同时,本资源摘要信息还介绍了软件开发的过程和实现,为实际应用提供了有效的工具。这种方法的重要性和前景不仅在于其高速和高精度,更在于其可以为材料科学领域的研究与发展提供更多的可能性和创新。
2024-06-06 10:19:44 1.53MB
1
TA_Lib-0.4.19-cp36-cp36m-win_amd64.whl
2024-06-02 14:16:55 483KB 机器学习 libc python
1
该书《Hands_On_Machine_Learning_with_Scikit_Learn_and_TensorFlow_3rd_Edition》相对于第一版,本书第三版所有代码都已从 TensorFlow 1.x 迁移到 TensorFlow 2.x,并且用更简单的 Keras 代码替换了大部分低级 TensorFlow 代码(图形,会话,特征列等)。该书是tensorflow官方网站的推荐图书之一(https://tensorflow.google.cn/resources/learn-ml/basics-of-machine-learning/?hl=zh-tw)本资源不仅有pdf,而且有配套的代码和数据。
2024-05-30 16:55:26 84.98MB tensorflow 机器学习 深度学习
1
内容概要:该资源介绍了使用机器学习方法对毒蘑菇进行分类的实现。主要包含了逻辑回归、高斯朴素贝叶斯、支持向量机、随机森林、决策树和人工神经网络等六种监督学习模型的应用。 适用人群:对机器学习和分类算法感兴趣的学习者、数据科学家、机器学习工程师等。 使用场景及目标:本资源可用于学习如何使用不同的监督学习模型对毒蘑菇进行分类,帮助用户理解各种模型的原理和应用场景,并能够根据实际需求选择合适的模型进行分类任务。 其他说明:资源中提供了详细的代码示例和实验结果,以及对比不同模型在毒蘑菇分类任务上的性能评估,帮助用户深入理解各个模型的优缺点和适用范围。
2024-05-29 18:49:19 39KB 机器学习 逻辑回归 特征工程
1
数据集中约包含2000+张水果图像,一共有五类水果已经分好类存在不同水果名的文件夹下,五类水果分别为apple、banana、grape、orange、pear。 为了确保数据集的多样性和代表性,我们从多个来源收集了水果图像,并对其进行了 筛选和整理。在构建数据集的过程中,我们特别注意确保每个类别的样本数量均衡, 以避免数据不平衡对模型训练和测试结果的影响。此外,为了验证模型的泛化能力,我们 特意准备了另一个独立的测试数据集 Testreal,以更全面地评估模型在未知数据上的表 现。 在图像的选择和整理过程中,我们力求保证图像的质量和多样性,以确保模型能够对 不同种类和不同外观的水果进行准确识别。我们相信这样的数据集构建能够为研究的实 验结果提供可靠的基础,同时也为相关研究提供了具有挑战性和实用性的数据资源
2024-05-29 17:32:30 166.24MB 数据集 图像分类 水果识别 机器学习
1
LiveSpeechPortrait是一种基于人脸表情识别的技术,它可以通过分析人脸的表情和动作,来判断人的情绪状态和心理特征。这项技术利用计算机视觉和机器学习的方法,对人脸图像进行处理和分析,从而准确地识别人的情感状态,包括喜怒哀乐、惊讶、厌恶等。通过对人的表情进行识别和分析,LiveSpeechPortrait可以帮助我们更好地理解人的情感反应和心理状态。 LiveSpeechPortrait的应用领域非常广泛。在情感识别方面,它可以应用于人机交互和情感计算领域,例如智能助理、虚拟现实和增强现实等技术中,通过识别用户的情绪状态,提供更加智能和个性化的服务。在用户体验研究方面,LiveSpeechPortrait可以帮助企业和研究机构了解消费者对产品和服务的真实反应,从而改进产品设计和市场营销策略。 此外,LiveSpeechPortrait还可以应用于市场调研和广告评估。通过分析人们对广告的表情反应,可以评估广告的效果和吸引力,为广告主提供更加精准的广告投放策略。在医疗领域,LiveSpeechPortrait也可以用于情绪识别和心理健康评估,帮助医生更好地了解患者的情感状态。
2024-05-29 12:12:51 65.02MB 人工智能 机器学习
1