内容概要 资源包括三部分(时间序列预测部分和时间序列分类部分和所需的测试数据集全部包含在内) 在本次实战案例中,我们将使用Xgboost算法进行时间序列预测。Xgboost是一种强大的梯度提升树算法,适用于各种机器学习任务,它最初主要用于解决分类问题,在此基础上也可以应用于时间序列预测。 时间序列预测是通过分析过去的数据模式来预测未来的数值趋势。它在许多领域中都有广泛的应用,包括金融、天气预报、股票市场等。我们将使用Python编程语言来实现这个案例。 其中包括模型训练部分和保存部分,可以将模型保存到本地,一旦我们完成了模型的训练,我们可以使用它来进行预测。我们将选择合适的输入特征,并根据模型的预测结果来生成未来的数值序列。最后,我们会将预测结果与实际观测值进行对比,评估模型的准确性和性能。 适合人群:时间序列预测的学习者,机器学习的学习者, 能学到什么:本模型能够让你对机器学习和时间序列预测有一个清楚的了解,其中还包括数据分析部分和特征工程的代码操作 阅读建议:大家可以仔细阅读代码部分,其中包括每一步的注释帮助读者进行理解,其中涉及到的知识有数据分析部分和特征工程的代码操作。
2024-01-26 20:05:19 407KB python 机器学习
1
<项目介绍> 该资源内项目源码是个人的课程设计作业,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到94.5分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 -------- -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2024-01-26 13:00:30 47.71MB python django vue.js
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
2024-01-25 22:34:27 8KB python 爬虫 数据收集
1
基于深度学习的OpenPose识别人体骨架点的python源代码。先解压文件,打开pycharm直接就可以运行,运行demo.py,不需要安装环境,所有配置文件都在压缩包里!建议直接根据此文件进行修改,配置openpose环境较为复杂!
2024-01-24 05:06:01 825.44MB 深度学习 python
1
70个python项目.zip
2024-01-24 00:04:25 224.09MB python
1
资源包含python实现的图片转换视频或者视频转图片的代码以及详细注解;同时我将改代码封装为了工具,利用PyQT5进行界面UI设计,资源中包含PyQT5的原始项目文件以及源码,可直接使用;除此之外,资源中还包含一个由代码封装而来的exe格式的图片视频转换工具。 资源为python代码资源,主要详细演示了如何将视频拆分为图片以及如何将多张图片合成为视频。 代码中,主要利用OpenCV实现视频的拆分以及图片合并为视频功能。 代码中,主要利用PyQT5进行界面设计,还包含一个原创软件图标。 工具为windows平台下可执行exe文件,可拆分视频,合并视频为图片,可显示拆分/合并进度等。
2024-01-24 00:01:45 306.53MB python 毕业设计 pyqt5 源码
1
Python脚本,使用Selenium 模拟浏览器操作。 在使用 Chrome 浏览器,用户可以使用鼠标滑动、按键点击以及键盘输入,作为信号输入设备向浏览器传达指令,浏览器收到指令后执行渲染。 这里提到的 Selenium WebDriver 是对浏览器提供的原生 API 进行封装,使用这套 API 可以操控浏览器的开启、关闭,打开网页,操作界面元素,控制 Cookie。简单说就是,可以通过写代码的方式来自动实现用户鼠标和键盘信号的输入。 由此实现模拟人为操作进行登录、验证、刷新网页以及点击购票等操作。
2024-01-23 21:17:30 6.4MB python
1
目前任务需要做一个界面程序,PyQt是非常方便的选择,QT丰富的控件以及python方便的编程。近期遇到界面中执行一些后台任务时界面卡死的情况,解决了在这里记录下。 PyQt PyQt简介 PyQt是Qt的python接口,PyQt的文档较少,但接口和函数可以完全参照Qt,继承了Qt中大量的控件以及信号机制,十分方便。以下简介一个基本的PyQt程序。 – 需要导入的类主要来自三个包 – from PyQt5.QtWidgets import 常用的控件 – PyQt5.QtCore 核心功能类,如QT,QThread,pyqtSignal – PyQt5.QtGui UI类,如QFont –
2024-01-23 00:02:54 61KB pyqt python python函数
1
舌苔数据集,两千多张图片,512x512通道,包含原图和labelme打好的标签
2024-01-22 16:30:28 206.13MB 数据集 python pytorch tensorflow
1
比较 思科路由表比较工具 crcompare_py3.py CLI 版本,基于 python 3。 wx_crcompare.py GUI 版本,基于 python 2.7 w/wxPython。
2024-01-21 23:11:11 11KB Python
1