永磁同步电机(PMSM)数学模型建立与仿真
2023-12-26 21:26:52 34KB
1
模型保存的版本为matlab2020a
2023-12-26 20:45:42 34KB matlab simulink 电力电子
1
这项研究调查了11种竞争时间序列GARCH模型的拟合收益率数据的性能,并使用了1996年1月至2015年12月期间每月的市场指数收益序列观察。 从对数似然(Log L),Schwarzs Bayesian Criterion(SBC)和Akaike Information Criterion(AIC)值获得的结果中,发现所确定的模型在两个时期(训练和测试时期)不同。训练期间为CGARCH(1,1)和EGARCH(1,1),而测试期间为ARCH(1)和GARCH(2,1)。 确定了两个极端类别的模型,分别代表最佳和最差的组。 这样的整体效果将趋于增加市场收益的波动性。 因此,该文件建议尼日利亚政府作为紧急事项,应通过证券交易委员会采取适当的积极措施,以规范市场波动,以便所提供的市场指数可以安全地用作衡量企业和企业绩效的预测指标。作为投资目的的指南。
2023-12-26 20:36:38 669KB GARCH模型
1
文件有模型、控制器、创建的数据库,对 一对一、一对多、多对多的添加、修改、删除、查询有实例和注释,对thinkphp关联模型不熟悉的朋友来说是个很好的学习资源
2023-12-26 09:07:19 3KB tp关联模型
1
本项目基于 weibo_senti_100k.csv 数据集,分别使用朴素贝叶斯、逻辑回归、LSTM、CNN、BERT等模型进行了实验,其中涉及的词向量表示方式包括one-hot、Bag of Words、TF-IDF、Word2Vec、Glove等。对于Word2Vec和Glove词向量的构建过程,本项目也提供了相关代码。项目中模型的训练运行脚本为train.sh,如bert_train.sh,模型的测试运行脚本为test.sh,如bert_test.sh。此外,本项目也会给出如何将训练好的BERT模型以服务的形式进行部署,以满足商业应用中的实时性需求。针对具体模型的使用,请读者查看*_README.md文件。希望通过本项目的学习,读者能够对情感分析中常用的模型技术有进一步的理解。
1
首先我们要对时间序列概念有一个基本的了解时间序列预测大致分为两种一种是单元时间序列预测另一种是多元时间序列预测单元时间序列预测是指只考虑一个时间序列的预测模型。它通常用于预测单一变量的未来值,例如股票价格、销售量等。在单元时间序列预测中,我们需要对历史数据进行分析,确定趋势、季节性和周期性等因素,并使用这些因素来预测未来的值。常见的单元时间序列预测模型有移动平均模型(MA)自回归模型(AR)自回归移动平均模型(ARMA)差分自回归移动平均模型(ARIMA)后期我也会讲一些最新的预测模型包括Informer,TPA-LSTM,ARIMA,XGBOOST,Holt-winter,移动平均法等等一系列关于时间序列预测的模型,包括深度学习和机器学习方向的模型我都会讲,你可以根据需求选取适合你自己的模型进行预测,如果有需要可以+个关注。
2023-12-25 19:58:03 51.93MB 深度学习
1
284个地级市 0-1矩阵 包含四个直辖市
2023-12-25 19:57:20 223KB 空间计量模型
1
EDSR 预训练模型
2023-12-22 17:21:32 516.83MB EDSR
1
iamQA 中文wiki百科问答系统,本项目使用了torchserver部署模型 知识库:wiki百科中文数据 模型:使用了的NER(CCKS2016数据)和阅读理解模型(CMRC2018),还有Word2Vec词向量搜索。 详细内容可以参考文章: 项目框架 模块介绍 ChineseWiki-master 功能:清洗wiki中文数据 相关项目: NER 功能:从问题中识别实体 例子:qurry:周董是谁? 》》 entiy:周董 模型:ALBERT 数据集:CCKS2016KBQA 相关项目: Word2vec 功能:如果实体不在知识库,则用W2V搜索近似实体 例子:entity:周董 >> ['周杰伦','JAY','林俊杰'] 相关项目: Entity linking 功能:根据NER或W2V得到的mention entity搜索知识库 Reader 功能:阅读理解文段,精确定位答
2023-12-22 16:42:56 636KB wiki Python
1
SVR实现多输入多输出回归模型搭建,python,带数据集
2023-12-21 22:48:44 17KB python 数据集
1