为了进一步加强保密通信的安全性,提出了一种基于FPGA硬件平台的多涡卷超混沌系统。这使得加密之后的图像更具有复杂性和不确定性。而且在加密处理之前对原始图像进行了小波变换处理,它能够去噪和对图像一定程度的压缩处理。实验结果表明该方案加密效果明显,图像还原程度高,达到了设计要求。
2022-12-07 19:25:33 1.11MB 超混沌 小波变换 图像加密 FPGA
1
针对传统的模糊C-均值聚类算法对初始聚类中心较敏感、易陷入局部最优的缺点,将粒子群优化算法和FCM算法相结合,提出一种改进的模糊聚类算法。该算法利用粒子群算法的全局搜索能力代替FCM算法寻找初始聚类中心,使其跳出局部最优,实现模糊聚类。主要从反映数据集分类的类内紧致性程度和类间分离性程度的角度考虑,重新设计适应度函数。实验结果表明,提出的算法在聚类正确率和有效性指标上有更好的效果。
1
此ppt分别从脉冲神经元、编码方式、学习策略以及总结展望四个方面对SNN进行讲解,并刨析了两篇基础论文。
2022-12-07 09:28:53 2.09MB 计算机视觉 深度学习 脉冲神经网络 SNN
1
一维神经网络回归 在这里,我提供了一个示例,其中神经网络用于预测一维回归模型。 这是每个文件的简短描述: MLPregressionLoss.m:使用反向传播算法计算梯度 MLPregressionPredict.m:预测一维回归模型。 nnet.m :这是一个演示,展示了每 100 次迭代的随机梯度方法的进展。
2022-12-06 20:11:41 5KB MATLAB
1
基于神经网络的吟诗作对技术研究与应用_检测.doc
2022-12-06 14:19:50 2.82MB 计算机
基于卷积神经网络图像风格迁移技术应用.docx
2022-12-06 14:19:34 3.79MB 计算机
主要介绍了单隐层网络的发展历程,发展期间遇到的问题机器解决方案,根据目标函数和网络结构列出其权重和阈值的递推公式,有助于加深对神经网络的理解,设计自己的网络或者目标函数。
2022-12-06 13:44:45 282KB 神经网络 参数推导
1
针对传统计算机辅助检测系统中肺结节检测存在大量假阳性的问题,提出一种基于三维卷积神经网络的肺结节识别方法。首先,将传统二维卷积神经网络扩展为三维卷积神经网络,充分挖掘肺结节的三维特征,增强特征的表达能力;其次,将密集连接网络与SENet相结合,在加强特征传递和复用的同时,通过特征重标定自适应学习特征权重;另外,引入focal loss作为网络的分类损失函数,提高对难样本的学习。在LUNA16数据集上的实验结果表明:与当前的主流深度学习算法相比,所提网络模型在平均每组CT图像中假阳个数为1和4时的检出率达到了0.911和0.934,CPM得分为0.891,优于大部分主流算法。
2022-12-06 13:24:54 2.76MB 图像处理 计算机辅 肺结节 三维卷积
1
MATLAB实现PSO-BP粒子群优化BP神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
基于PSO-BP粒子群优化BP神经网络的数据分类预测(Matlab完整程序和数据) 基于PSO-BP粒子群优化BP神经网络的数据分类预测(Matlab完整程序和数据) 输入12个特征,分四类。