训练支持向量机(SVM)需要解决非常大的二次规划(QP)优化问题。 传统方法(例如,牛顿法)用于解决此问题,这可能导致训练缓慢并占用大量内存,尤其是对于大型训练集。 这些缺点限制了SVM的应用。 为了提高支持向量机的训练速度并减少存储需求内存,本文提出了一种通过从原始集合中提取边界样本来减少训练数据量的新方法。 人工集和UCI集用于测试我们方法的性能。 当训练集是线性可分离的时(例如LS-600和LS-1600),压缩率可以达到93.8%和98.7%,而准确性都达到100.0%。 该方法在非线性情况下的性能仍然很好。 实验结果表明,该方法可以减少训练数据的数量,保证分类的准确性。
1