图像去噪是数字图像处理中最基本的研究内容, 也是一项十分关键的技术, 一直以来是图像处理领域的难点。图像去噪的好坏直接影响后续图像边缘检测、特征提取、图像分割和模式识别等图像处理。为有效去除乘性噪声的影响, 提出一种深度残差学习的乘性噪声去噪方法。该方法通过引入残差优化, 解决了卷积神经网络在层数较多时, 随着层数加深, 梯度在传播过程中逐渐消失的问题。与4种经典去噪算法进行比较, 结果表明, 该方法在有效去除乘性噪声的同时, 可以更好地保留图像的边缘和纹理区域的细节信息, 为后续的图像分割、配准和目标识别等奠定基础。
1