利用simulink搭建的BP神经网络模型,亲测有效
2022-04-28 21:06:10 2.62MB 文档资料 神经网络 人工智能 深度学习
1
手写数字图片训练集(三层BP神经网络应用)
2022-04-28 21:05:59 6.15MB python 神经网络
1
利用Landsat7 ETM+遥感图像反射率和实测水深值之间的相关性,建立了动量BP人工神经网络水深反演模型,并对长江口南港河段水深进行了反演。结果表明:具有较强非线性映射能力的动量BP神经网络模型能较好地反演出长江口南港河段的水深分布情况;由于受长江口水体高含沙量的影响,模型对小于5 m的水深值反演精度较高,而对大于10 m的水深值反演精度较低。
2022-04-28 21:00:55 1.26MB 人工神经网络
1
BP神经网络可以解决地表沉陷等非线性关系问题,为了更精确地进行地表沉陷变形预测,引入Adaboost算法对BP神经网络进行改进,并运用Matlab R2014a建立基于Adaboost的BP神经网络地表沉陷预测模型。首先通过BP神经网络进行训练、测试,经过多次迭代,将每个BP神经网络作为一个弱预测器加权组合,形成强预测器,并首次对青岛地铁3号线保河区间隧道进行地表下沉值预测。预测结果表明:Adaboost的BP神经网络预测下沉值的平均绝对误差为0.585 3 mm,平均相对误差为5.82%,与BP神经网络预测相比,绝对误差降低了2.594 7 mm,相对误差降低了27.46%,由此表明Adaboost的BP神经网络适用于地表沉陷预测,且预测精度更高。
1
组个比较全面的PSO粒子群优化算法的MATLAB仿真,matlab2021a仿真。
2022-04-28 12:05:23 13KB matlab 算法 文档资料 开发语言
通过遗传优化算法优化BP神经网络,优化过程中显示染色体编码长度,最后输出预测结果精度,matlab2021a仿真测试
ML机器学习入门 神经网络基础 BP人工神经网络的基本原理、模型与实例 本讲大纲: 人工神经网络的基本概念 误差反向传播(BP)神经网络
ML机器学习入门 神经网络基础 BP神经网络详解 BP神经网络模型与学习算法 清晰易懂
2022-04-28 09:09:09 531KB 神经网络 机器学习 学习 算法
引言 利用机器模仿人类的智能是长期以来人们认识自然、改造自然和认识自身的理想。 研究ANN目的: (1)探索和模拟人的感觉、思维和行为的规律,设计具有人类智能的计算机系统。 (2)探讨人脑的智能活动,用物化了的智能来考察和研究人脑智能的物质过程及其规律。 ANN的研究内容 (1)理论研究:ANN模型及其学习算法,试图从数学上描述ANN的动力学过程,建立相应的ANN模型,在该模型的基础上,对于给定的学习样本,找出一种能以较快的速度和较高的精度调整神经元间互连权值,使系统达到稳定状态,满足学习要求的算法。 (2)实现技术的研究:探讨利用电子、光学、生物等技术实现神经计算机的途径。 (3)应用的研究:探讨如何应用ANN解决实际问题,如模式识别、故障检测、智能机器人等。
引言 利用机器模仿人类的智能是长期以来人们认识自然、改造自然和认识自身的理想。 研究ANN目的: (1)探索和模拟人的感觉、思维和行为的规律,设计具有人类智能的计算机系统。 (2)探讨人脑的智能活动,用物化了的智能来考察和研究人脑智能的物质过程及其规律。 ANN的研究内容 (1)理论研究:ANN模型及其学习算法,试图从数学上描述ANN的动力学过程,建立相应的ANN模型,在该模型的基础上,对于给定的学习样本,找出一种能以较快的速度和较高的精度调整神经元间互连权值,使系统达到稳定状态,满足学习要求的算法。 (2)实现技术的研究:探讨利用电子、光学、生物等技术实现神经计算机的途径。 (3)应用的研究:探讨如何应用ANN解决实际问题,如模式识别、故障检测、智能机器人等。