【SVM预测】基于粒子群优化支持向量机实现预测matlab源码.md
2021-12-07 20:56:34 13KB 算法 源码
1
该算法在GITHUB上,我们将该代码重新编译了,并增加了需要的库 opencv2.4.2 有问题可以 : yfyg3896@sina.com
2021-12-07 20:51:01 45.59MB tracking
1
multilabelsvm 该库允许svm(支持向量机)在nodejs和浏览器中支持多类。 安装 节点 npm install multilabelsvm 对于svm内核选项,请参考svmjs初始化分类器,如下所示 var multilabel = require('multilabelsvm' ); var actionClassifier = new multilabel.Classifier({kernel : 'linear'}); 浏览器 您需要为此包含svmjs。 // include the library < script src = "./svmjs/lib/svm.js" > < / script > < script src = "./lib/multilabelsvm.js" > < / script > < script > var actionClass
2021-12-07 20:12:49 4KB JavaScript
1
行人检测在人工智能系统、车辆辅助驾驶系统和智能监控等领域具有重要的应用,是当前的研究热点.针对HOG特征不明显、支持向量机(SVM)分类器计算复杂度高,导致识别率低和检测速度慢的问题,本文提出了一种改进的基于增强型HOG的行人检测算法.该算法首先预处理原始图像并提取其HOG特征,然后增强该特征生成增强型HOG,经XGBoost分类器进行行人检测.在INRIA数据集上进行测试,实验结果表明所提算法识别率高达95.49%,有效地提高了行人检测性能.
1
二手车价格预测得分:91% 数据清理,数据可视化,数据预处理,ML模型(LR,DT,RF,GBR,KNN,SVM,XGBR,TENSORFLOW),PCA,LDA,度量标准(R Square,MSE,RMSE,MAE)
2021-12-07 14:47:39 1.01MB JupyterNotebook
1
svm算法手写matlab代码OpenCV 4第二版的机器学习 这是Packt发布的的代码存储库。 使用OpenCV 4,Python和scikit-learn构建图像处理应用程序的智能算法 这本书是关于什么的? OpenCV是用于构建计算机视觉应用程序的开源库。 最新版本OpenCV 4提供了许多功能和平台改进,本最新第二版对此进行了全面介绍。 您将首先了解新功能并设置OpenCV 4来构建计算机视觉应用程序。 您将探索机器学习的基础,甚至学习设计可用于图像处理的不同算法。 逐步地,这本书将带您进入有监督和无监督的机器学习。 您将获得在Python中使用scikit-learn进行各种机器学习应用程序的动手经验。 后面的章节将重点介绍不同的机器学习算法,例如决策树,支持向量机(SVM)和贝叶斯学习,以及如何将它们用于对象检测计算机视觉操作。 然后,您将深入研究深度学习和整体学习,并发现它们在现实世界中的应用,例如手写数字分类和手势识别。 最后,您将掌握最新的Intel OpenVINO,以构建图像处理系统。 本书涵盖以下激动人心的功能: 了解图像处理的核心机器学习概念 探索机器学习和
2021-12-07 14:42:18 72.13MB 系统开源
1
针对现有方法在高密度场景人群密度估计不够准确的问题,提出了Gabor滤波结合最小二乘支持向量机(LS-SVM)的人群密度估计算法。首先,设计一组单独的二维Gabor滤波器应用在人群图像中以产生相应的滤波通道。然后,通过计算这些通道上灰度值的均值和方差得到特征向量。最后,采用最小二乘支持向量机分析特征向量和人数之间的关系,完成最终的密度估计。在UCSD数据集和Mall数据集上的实验显示,提出的方法实现了更快的执行时间和更好的精度,证明了基于Gabor滤波器和LS-SVM的人群密度估计算法的有效性。
1
提出了一种基于多特征提取和支持向量机(support vector machines,SVM)参数优化的车型识别方法,此方法解决了采用单一特征容易受到光照、天气、阴影等环境影响的问题,并且可以对运动中的车辆进行车型识别。首先,采集车辆样本并进行图像预处理,提取车辆的几何特征、纹理特征和方向梯度直方图(histogram of oriented gradient,HOG)特征;其次,将提取的多种特征量进行组合测试,并与单个特征量的测试结果进行比较;最后,采用粒子群算法优化SVM的参数并使用优化的SVM参数进行运动车辆的车型识别。实验结果表明:提出的多特征提取和SVM参数优化相结合的车型识别方法能够取得很好的识别效果,识别率达到90%以上。
1
用于在MATLAB平台上求基于hog特征的行人检测算法时,求hog特征的代码
2021-12-07 10:37:05 331KB hog
1
由于软件版本等原因,网络上好心人分享的《MATLAB神经网络30个案例分析》的第29章“支持向量机的回归拟合——混凝土抗压强度预测”的代码,在MATLAB2016上运行后有问题,现将修改、亲自运行验证后的代码分享,让有相似研究经历的小伙伴不再走弯路,共勉!
1