一个分类代码 不是自己做的 但是是一个很好的例子 自己认为可以 所以分享了
2022-05-10 15:20:11 3KB python,svm
1
最小二乘支持向量机MATLAB,可用于预测,并且是MATLAB程序的
2022-05-10 14:57:03 3.89MB ls-svm
1
1D-CNN的模型、训练与预测。用于时间序列的一种信号处理。
2022-05-10 14:14:58 3KB 1D-CNN 1DCNN CNN CNN-
1、python程序 2、有详细的数据处理过程 3、代码简单清楚,可直接运行
2022-05-10 14:06:23 6.32MB 支持向量机 python 综合资源 算法
1、python程序 2、利用CEEMDAN计算了多尺度熵MSE 3、有数据集可直接运行
2022-05-10 14:06:23 4.84MB 支持向量机 python 算法 机器学习
卷积神经网络过程可视化方面的论文,非常详细,香港科技大学最新研究成果
2022-05-10 10:32:47 15.06MB CNN 可视化 卷积神经网络 浙江大学CG
1
车型识别系统由硬件和软件组成,硬件包括两部摄像机、图像处理计算机。图像处理计算机指安装了车型识别系统软件的计算机。软件包括视频捕获系统和车型识别软件。视频捕获系统负责视频监控,并从视频流中获取帧图像,然后送车型识别软件处理,该系统用微软公司提供的一套在 Windows平台上进行媒体流处理的开发包 DirectShow实现。车型识别软件是该系统的核心,它承担着运动目标检测、分割、图像预处理、车型特征提取、车型分类等重要任务。
2022-05-09 23:23:58 331KB SVM 模式识别
1
用jaffe数据集,只分了三类。hog用matlab现成的代码提的,svm调通的别人的C++程序。最后出来效果不怎么好,可能训练数据有点少。有需要的下载。平台vs2017
2022-05-09 23:09:34 28.73MB HOG SVM 表情识别
1
所谓支持向量机(support vector machine),分为两部分,分别是“支持向量”和“机”。支持向量简单来说就是支持或支撑平面上把两类类别划分开来的超平面的向量点。这里的“机”便是一个算法。支持向量机便是一种分类方法,是一种最大间隔分类器。本程序根据支持向量机的算法步骤,进行了底层实现。
2022-05-09 21:47:44 3KB 支持向量机 matlab
1
drcn matlab代码通过 CNN 架构和 TV-TV 最小化实现单图像超分辨率 介绍 复制论文中实验的Matlab代码: Marija Vella, João FC Mota BMVC 2019 该论文描述了任何超分辨率算法的后处理步骤,但这与基于 CNN 的算法特别相关。 给定低分辨率图像 b 和超分辨率算法的输出 w,后处理步骤通过求解 TV-TV 最小化来生成改进的高分辨率图像: 我们的实验表明,这个过程步骤系统地提高了重建图像的质量,如 PSNR 和 SSIM 所测量的那样,即使基本算法是最先进的,(例如, , , )。 要求 (针对 R2019a 进行测试) 内容 有 2 个主要文件夹:和 . 该文件夹包含三个子文件夹: - 来自数据集、 和 的地面实况图像; 这些用于测试。 - 我们考虑过的超分辨率方法的输出图像(、 和 )。 根据缩放因子将它们裁剪为适当的大小,以避免与地面实况图像错位。 - 包含两个带有示例图像的子文件夹,一个带有真实图像,另一个带有来自 SRCNN 的输出图像,放大系数为 2 倍。 该文件夹包含运行所有实验所需的代码。 脚本experiments
2022-05-09 21:38:17 261.97MB 系统开源
1