采用LSTM算法用python语言实现的信号时间序列预测,可预测信号的占用度(The LSTM algorithm is used to predict the signal time series in python language)
2022-04-06 20:06:57 3KB lstm python 算法 人工智能
CNN+SVM结合的python程序
2022-04-06 16:06:52 9.44MB cnn
1
MatConvNet有一个简单的设计理念。它并没有将CNN包裹在复杂的软件层面上,而是直接将MATLAB命令直接展现为计算CNN构建模块的简单函数,如线性卷积和ReLU运算符。这些构建块很容易组合成完整的CNN,并可用于实现复杂的学习算法。尽管提供了几个真实的小型和大型CNN结构和训练例程,但仍可以利用MATLAB原型设计的高效性回到底层构建自己的结构。通常不需要C编码来实现新的结构。因此,MatConvNet是计算机视觉和CNN研究的理想场所
2022-04-06 16:06:49 2.38MB matlab cnn 计算机视觉 学习
1
PyTorch模型 CNN网络的Pytorch实现 古典网络 AlexNet: VGG: ResNet: 初始V1: InceptionV2和InceptionV3: InceptionV4和Inception-ResNet: 轻量级网络 MobileNets: MobileNetV2: MobileNetV3: ShuffleNet: ShuffleNet V2: 挤压网 Xception 混合网 幽灵网 对象检测网络 固态硬盘: YOLO: YOLOv2: YOLOv3: FCOS: FPN: 视网膜网 对象作为点: FSAF: 中心网 FoveaBox 语义分割 FCN 快速SCNN LEDNet: 网络 鱼眼MODNet: 实例细分 极地面具 人脸识别和识别 面盒 LFFD 变脸网 人体姿势估计 堆叠式沙漏网络 简单基准 脂蛋白
2022-04-06 15:07:28 88KB Python
1
由于网络问题加载数据集可能加载不成功,下载后解压到C盘中.keras文件中既可使用
2022-04-06 12:05:23 140.06MB keras cnn 网络 c语言
1
基于pytorch深度学习框架的AlexNet卷积神经网络,主要用于图像图像分类任务。可以作为demo示例自行学习
2022-04-06 12:05:20 489.58MB pytorch 深度学习 cnn 分类
1
计算机视觉-CNN学习MATLAB源码 卷积神经网络(CNN 或 ConvNet)是一种深度学习网络架构,它直接从数据中学习,不需要手动提取特征。 CNN 特别适合在图像中寻找模式以识别物品、人脸和场景。这类网络也能很好地对一些非图像数据进行分类,如音频、时间序列和信号数据。 需要目标识别和计算机视觉的应用(如自动驾驶汽车和人脸识别应用)高度依赖 CNN。 卷积神经网络CNN的结构一般包含这几个层: (1)输入层:用于数据的输入 (2)卷积层:使用卷积核进行特征提取和特征映射 (3)激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 (4)池化层:进行下采样,对特征图稀疏处理,减少数据运算量。 (5)全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失 CNN的三个特点: (1)局部连接:这个是最容易想到的,每个神经元不再和上一层的所有神经元相连,而只和一小部分神经元相连。这样就减少了很多参数 (2)权值共享:一组连接可以共享同一个权重,而不是每个连接有一个不同的权重,这样又减少了很多参数。 (3)下采样:可以使用Pooling来减少每层的样本数
2022-04-06 12:05:18 5KB matlab cnn 计算机视觉 学习
1
种族分类器 该代码实现了种族分类器,考虑的种族是:黑人,白人,亚洲人,印度人和西班牙裔。 该模型将任何大小的图像作为输入,并输出图像中人的种族。 训练 python train.py python train_faces.py(提取的人脸模型)在预测中,将模型组合在一起,如果算法设法提取人脸,则使用人脸模型,否则将相互预测。 型号下载 在下载模型然后将其放在称为模型的目录中。 预测 将图像插入到test_data文件夹中,然后运行python Forecast.py对图像进行分类。用于预测的模型是在Imagenet上预训练的VGG16。 Pythonpredict.py --data_dir'/ test / images / folder /' 现在享受您的种族分类器!
2022-04-06 11:12:02 524KB Python
1
LSTM用于人类活动识别 使用智能手机传感器数据集(腰部连接的手机)基于LSTM的人类活动识别。 将运动类型分为以下六类: 步行, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, 坐下 常设, 铺设。 数据集 可以从下载数据集 点击此以观看有关如何收集数据的视频 通过应用噪声滤波器对传感器信号(加速度计和陀螺仪)进行预处理,然后在2.56秒和50%重叠(128个读数/窗口)的固定宽度滑动窗口中进行采样。 使用巴特沃斯低通滤波器将具有重力和人体运动成分的传感器加速度信号分离为人体加速度和重力。 假定重力仅具有低频分量,因此使用了具有0.3 Hz截止频率的滤波器。 模型 在此仓库中,我们采用了两层堆叠的基本LSTM,几乎使用了原始数据:只有重力效应已从加速度计中滤出,作为另一个3D功能的预处理步骤,以作为帮助学习的输入。 用法 安装TensorFlow r
2022-04-06 10:32:15 113.18MB JupyterNotebook
1
这篇论文的思路特别好: 我们提出了一种用于脑电情感识别的端到端深度学习方法。该神经网络综合考虑了脑电信号的空间信息、时间信息和注意力信息。将CNN,RNN和通道注意力机制(channel-wise attention)和扩展自我注意力机制(self-attention mechanisms)混合起来,同时通过通过注意力机制计算出各个通道权重,筛选出更有价值的通道。同时采用DE作为频域特征,结合时域特征和空间特征三大特征相融合考虑。模型方面:CNN+RNN(CNN-RNN)、通道性注意机制+CNN+RNN(A-CNN-RNN)和CNN+RNN+扩展自我注意机制(CNN-RNN-A)、连续卷积神经网络(Conti-CNN)、图卷积神经网络(GCNN)和卷积复发注意力模型(CRAM)。介绍了六种深度学习方法和两种传统方法进行比较,六大模型相互对比,在DEAP数据库的效价和觉醒分类任务中,平均情绪识别准确率分别为92.74%和93.14%!希望大家能好好理解阅读。 我们将通道性注意整合到CNN中,CNN可以提取空间注意特征,通道性注意可以提取通道间的注意信息。
2022-04-06 03:12:02 20.97MB cnn rnn 人工智能 深度学习