煤矿智能视频监控中常常碰到许多雾尘图像且伴有各种随机噪声,对应的图像降质严重影响了后续视频图像处理工作,因此提出一种基于暗原色先验与双边滤波器的去雾除尘和同步去噪算法。结合已有的大气散射物理模型,推导建立煤矿雾尘图像退化模型。考虑煤矿雾尘图像的特点,设计基于暗原色先验知识的大气光、粗略透射率估计的方法与步骤。分析粗略透射率图的优化要求以及双边滤波器的特性,引入联合双边滤波器快速获得精细透射率图。依据图像退化模型构建正则化目标函数,求取转换图像并进行高斯双边滤波,获得复原图像并同步实现噪声的有效去除。实验结果验证了算法的有效性,与已有去雾算法相比计算效率有较大提高,且复原质量良好适合于煤矿智能视频监控环境。
1
该代码可以实现图像矩阵和一个二维高斯函数的卷积
2022-10-22 17:42:33 496B matlab
1
这是一个自适应滤波器的matlab程序
2022-10-22 14:04:44 84KB FIR滤波器 filter adaptive 自适应滤波器
1
卡尔曼滤波,由笛卡尔坐标到极坐标的转换,并给出测量噪声的相关矩阵R的公式,MATLAB即可实现。(坐标系转化的推导文档)
1
matlab代码,该代码包括锂离子电池实验数据,对于没有实验数据的用户十分友好,实验数据里有SOC-OCV曲线,以及实验室测量的电流电压。本代码采用了两个卡尔曼滤波器来完成SOC的估计,并与单独的卡尔曼滤波做了对比。代码的中文注释比较详细,帮助读者理解以及进行二次开发。程序可以完美运行,需要注意的点是先将文件里的数据导入matlab的工作空间,如有问题可在该页面下方进行评论或者私信我。
采用二阶RC模型,需要代入自己的数据的地方: R0 = @(x)(-0.07495*(x(4))^4+0.2187*(x(4))^3-0.1729*(x(4))^2+0.01904*(x(4))+0.1973); R1 = @(x)(0.07826*(x(4))^4-0.2208*(x(4))^3+0.217*(x(4))^2-0.08761*(x(4))+0.01664); R2 = @(x)(0.1248*(x(4))^4-0.2545*(x(4))^3+0.1254*(x(4))^2-0.03868*(x(4))+0.05978); C1 = @(x)(2431*(x(4))^4-4606*(x(4))^3+3084*(x(4))^2-589*(x(4))+209.8); C2 = @(x)(681.1*(x(4))^4-3197*(x(4))^3+4595*(x(4))^2-3114*(x(4))+1444);
扩展卡尔曼滤波算法的matlab程序
2022-10-21 16:47:20 9KB
1
92页的PPT详细介绍KalmanFiltering及相关滤波知识。 适合初学者快速了解相关知识。
1
引导滤波器的matlab算法,可以用作图像的处理
1
卡尔曼滤波python代码,直接能用,方便
2022-10-20 22:38:48 463KB python卡尔曼 Python滤波 卡尔曼滤波
1