机器学习部分聚类 SVM PCA详细代码实例,并附有数据集。
2021-12-30 12:37:09 17.77MB K-means 、SVM、PCA
1
基于matlab的表情识别代码数据挖掘 项目1 在本作业中,您将研究k最近邻,神经网络和SVM分类器在两个实际分类问题上的应用。 用于此分配的数据集已上传到“数据集”文件夹下。 x_train,y_train,x_test和y_test分别表示训练功能,训练标签,测试功能和测试标签。 在x_train和x_test中,每一行代表一个数据样本,每一列代表一个特征。 问题1 人类活动识别数据集是根据对30名志愿者进行的实验而创建的,以使用智能手机数据识别人类活动。 每个人都在腰部佩戴智能手机(三星Galaxy S II)进行六项活动(步行,步行,上楼,下坐,坐着,站立,躺着)。 使用其嵌入式加速度计和陀螺仪,可以以50Hz的恒定速率捕获3轴线性加速度和3轴角速度。 使用信号处理算法处理数据以提取维度561的特征向量。训练集包含7,352个样本,测试集包含2,947个样本。 在此数据集上实现k = 5的k最近邻算法。 使用简单的欧几里德距离度量来计算两个样本之间的距离。 在训练集上训练带有参数2的多项式内核的SVM分类器,并在测试集上进行测试。 您需要为每个课程训练一个SVM。 为了预测测试
2021-12-29 15:56:20 34.77MB 系统开源
1
K-均值可见 K-Means聚类概念的可视化 演示: :
2021-12-26 20:30:43 39KB JavaScript
1
多维k-means聚类算法java简单实现,导入运行KmeansTest.java可看到结果 多维k-means聚类算法java简单实现,导入运行KmeansTest.java可看到结果
2021-12-26 13:55:21 10KB 多维 k-means 聚类
1
主要介绍了python 代码实现k-means聚类分析(不使用现成聚类库),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
1
本资源包括 线性回归,Logistic回归和一般回归,K-means聚类分析,独立分析,线性判别分析,增强学习,还有混合高斯模型和EM算法的的学习笔记,往后还有更新。
2021-12-23 02:17:43 4.08MB 线性回归 K-means聚类
1
K-means聚类算法 简介 聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类技术经常被称为无监督学习。 K均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。 算法 先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。一旦全部对象都被分配了,每个聚类的聚类中心会根据聚类中现有的对象被重新计算
2021-12-22 20:07:13 84KB ab atl b函数
1
使用K均值的客户细分 使用K-Means聚类算法根据新近度,频率和货币价值(RFM)指标对客户进行细分
2021-12-22 12:59:42 1.5MB JupyterNotebook
1
k-means聚类算法及matlab代码目录 介绍 K-均值聚类是一种简单且可扩展的聚类方法,它以一种客观的方式将观察结果划分为k个聚类。 它具有非常广泛的应用,例如图像分割,零售产品分类(Kusrini,2015),温室气体排放等环境问题(Kijewska和Bluszcz,2015)。 K均值聚类可以与其他高级方法结合使用。 例如,它与支持向量机(SVM)一起使用来执行自动文本分类(Perrone和Connell,2000年)。 它也可以用作预处理方法,例如在隐马尔可夫模型(HMM)中初始化(Hu和Zanibbi,2011年)。 它的广泛应用和简单的计算复杂度使k-means聚类成为当今流行的方法之一。 当维数d> 1且簇数k> 1时,找到k均值成本函数的最小值是一个NP难题。 科学家想出了几种启发式方法来找到局部最小值,但是该过程仍然需要大量计算,尤其是对于具有高维特征的大型数据集而言。 因此,我们希望在机器集群上实现k-means启发式方法的并行版本,以在不牺牲算法准确性的情况下显着加快算法的运行速度。 k均值聚类的典型方法是期望最大化(EM)。 E步将点分配到最近的聚类中心,而
2021-12-18 20:06:11 54.51MB 系统开源
1