为大幅度减少采集路面不平度信号的存储空间,提高采集速度,基于压缩感知理论针对标准路面的不平度信号进行压缩采样和重构。首先验证了B级路面不定度信号在频域下的近似稀疏性,并进行了信号的压缩采样。针对现阶段凸优化方法和常用的三种贪婪算法的不足,提出一种改进的模拟退火算法与子空间追踪算法相结合的稀疏度自适应匹配追踪算法,利用改进的模拟退火算法快速搜索匹配最优的稀疏度,并采用子空间追踪算法快速重构信号。仿真实验对比五种重构方法,结果表明,凸优化方法精度较高,耗时过长;OMP和SP算法耗时极短,但需要预先进行实验来估测信号的稀疏度,实用性低;SAMP算法能实现稀疏度的自适应匹配,但匹配的误差较大,且耗时较长;提出的新方法具有良好的精度和较快的执行速度,R-squares和耗时的均值分别为0.983 7和2.77 s,稀疏度估测效果较好,且采样点数的增加不影响算法重构信号的速度。
1