大数据系统-构建可扩展实时数据系统构建原理与最佳实践,英文版(非MEAP版本)
2022-02-07 04:07:54 7.44MB 大数据
1
APACHE NUTTX(吸引人) 介绍孵化状态 社区 获得帮助 邮件列表 问题追踪器 源代码 网站源代码 环境环境 安装Cygwin Windows 10下的Ubuntu Bash 使用macOS 安装 下载并解压缩 半可选的应用程序/程序包 路径中有空格的安装目录 从存储库下载 相关资料库 关于头文件的注意事项 配置NuttX 实例化“固定”配置 刷新配置 NuttX配置工具 在配置菜单中查找选择 显示隐藏的配置选项 确保您在正确的平台上 比较两种配置 制作defconfig文件 与旧配置不兼容 DOS下的NuttX配置工具 工具链 跨开发工具链 NuttX Buildroot工具链 炮弹 建筑NuttX 建筑 重建 建立目标和选项 本机Windows构建 安装GNUWin32 Cygwin构建问题 奇怪的路径问题 Window本机工具链问题 文献资料 介绍 Apache
2022-02-01 19:40:03 39.08MB real-time microcontroller embedded mcu
1
Real-time tracking of multiple persons by Kalman filtering and face pursuit for multimedia applications - Girondel_SSIAI_2004.pdf
2022-01-30 09:08:59 411KB Kalman
1
最新的uCOS-III-the real-time kernel 大名鼎鼎的Jean J. Labrosse著,英文原版。中文翻译为usos3实时内核 由于ucos3针对不同芯片出了不同教材,所以这个是针对ST-STM32的,故使用stm32的下载绝对对路。使用其他芯片的慎重!
2022-01-22 22:28:49 18.37MB uCOSIII real-time Labrosse STM32
1
实时人脸检测Centerface 非官方版本的Centerface,可在速度和准确性之间取得最佳平衡。 Centerface是一种适用于边缘设备的实用的免锚人脸检测和对齐方法。 该项目提供了培训脚本,培训数据集和预培训模型,以方便用户重现结果。最后,感谢中心人的作者提供的培训建议。 WIDER_FACE验证集中的性能结果 使用相同的火车数据集而没有其他数据对于多比例尺,将比例尺设置为0.8、1.0、1.2、1.4 ,但它们的尺寸也将调整为800 * 800,因此我认为这不是真正的多比例尺测试。 方法 简单 中等的 难的 我们的(一个尺度) 0.9206 0.9089 0.7846 原版的 0.922 0.911 0.782 我们的(多尺度) 0.9306 0.9193 0.8008 要求 使用pytorch,您可以使用pip或conda来安装要求 # for pip cd
2022-01-21 18:43:18 9.09MB real-time face-detection anchor-free centerface
1
如果你做real time PCR 的仪器是ABI 公司,设计引物时一定要用ABI 引物设计软件primer express,primer express 3.0当前最优秀的RT-PCR引物设计软件
2022-01-15 22:43:35 16.38MB RT-PCR,引物
1
1 Introduction 1.1 Contents Overview 1.2 About the Code 2 Collision Detection Design Issues 2.1 Collision Algorithm Design Factors 2.2 Application Domain Representation 2.2.1 Object Representations 2.2.2 Collision versus Rendering Geometry 2.2.3 Collision Algorithm Specialization 2.3 Different Types of Queries 2.4 Environment Simulation Parameters 2.4.1 Number of Objects 2.4.2 Sequential versus Simultaneous Motion 2.4.3 Discrete versus Continuous Motion 2.5 Performance 2.5.1 Optimization Overview 2.6 Robustness 2.7 Ease of Implementation and Use 2.7.1 Debugging a Collision Detection System 2.8 Summary 3 A Math and Geometry Primer 3.1 Matrices 3.1.1 Matrix Arithmetic 3.1.2 Algebraic Identities Involving Matrices 3.1.3 Determinants 3.1.4 Solving Small Systems of Linear Equation using Cramer's Rule 3.1.5 Matrix Inverses for 2x2 and 3x3 Matrices 3.1.6 Determinant Predicates 3.1.6.1 ORIENT2D(A, B, C) 3.1.6.2 ORIENT3D(A, B, C, D) 3.1.6.3 INCIRCLE2D(A, B, C, D) 3.1.6.4 INSPHERE(A, B, C, D, E) 3.2 Coordinate Systems and Points 3.3 Vectors 3.3.1 Vector Arithmetic 3.3.2 Algebraic Identities Involving Vectors 3.3.3 The Dot Product 3.3.4 Algebraic Identities Involving Dot Products 3.3.5 The Cross Product 3.3.6 Algebraic Identities Involving Cross Products 3.3.7 The Scalar Triple Product 3.3.8 Algebraic Identities Involving Scalar Triple Products 3.4 Barycentric Coordinates 3.5 Lines, Rays, and Segments 3.6 Planes and Halfspaces 3.7 Polygons 3.7.1 Testing Polygonal Convexity 3.8 Polyhedra 3.8.1 Testing Polyhedral Convexity 3.9 Computing Convex Hulls 3.9.1 Andrew's Algorithm 3.9.2 The Quickhull Algorithm 3.10 Voronoi Regions 3.11 Minkowski Sum and Difference 3.12 Summary 4 Bounding Volumes 4.1 Desired BV Characteristics 4.2 Axis-Aligned Bounding Boxes (AABBs) 4.2.1 AABB-AABB Intersection 4.2.2 Computing and Updating AABBs 4.2.3 AABB from the Object Bounding Sphere 4.2.4 AABB Reconstructed from Original Point Set 4.2.5 AABB from Hill-Climbing Vertices of the Object Representation 4.2.6 AABB Recomputed from Rotated AABB 4.3 Spheres 4.3.1 Sphere-Sphere Intersection 4.3.2 Computing a Bounding Sphere 4.3.3 Bounding Sphere from Direction of Maximum Spread 4.3.4 Bounding Sphere Through Iterative Refinement 4.3.5 The Minimum Bounding Sphere 4.4 Oriented Bounding Boxes (OBBs) 4.4.1 OBB-OBB Intersection 4.4.2 Making the Separating-Axis Test Robust 4.4.3 Computing a Tight OBB 4.4.4 Optimizing PCA-Based OBBs 4.4.5 Brute-Force OBB Fitting 4.5 Sphere-Swept Volumes 4.5.1 Sphere-Swept Volume Intersection 4.5.2 Computing Sphere-Swept Bounding Volumes 4.6 Halfspace Intersection Volumes 4.6.1 Kay-Kajiya Slab-Based Volumes 4.6.2 Discrete-Orientation Polytopes (k-DOPs) 4.6.3 k-DOP-k-DOP Overlap Test 4.6.4 Computing and Realigning k-DOPs 4.6.5 Approximate Convex Hull Intersection Tests 4.7 Other Bounding Volumes 4.8 Summary 5 Basic Primitive Tests 5.1 Closest Point Computations 5.1.1 Closest Point on Plane to Point 5.1.2 Closest Point on Line Segment to Point 5.1.2.1 Distance of Point to Segment 5.1.3 Closest Point on AABB to Point 5.1.3.1 Distance of Point to AABB 5.1.4 Closest Point on OBB to Point 5.1.4.1 Distance of Point to OBB 5.1.4.2 Closest Point on 3D Rectangle to Point 5.1.5 Closest Point on Triangle to Point 5.1.6 Closest Point on Tetrahedron to Point 5.1.7 Closest Point on Convex Polyhedron to Point 5.1.8 Closest Points of Two Lines 5.1.9 Closest Points of Two Line Segments 5.1.9.1 2D Segment Intersection 5.1.10 Closest Points of a Line Segment and a Triangle 5.1.11 Closest Points of Two Triangles 5.2 Testing primitives 5.2.1 Separating Axis Test 5.2.1.1 Robustness of the Separating Axis Test 5.2.2 Testing Sphere against Plane 5.2.3 Testing Box against Plane 5.2.4 Testing Cone against Plane 5.2.5 Testing Sphere against AABB 5.2.6 Testing Sphere against OBB 5.2.7 Testing Sphere against Triangle 5.2.8 Testing Sphere against Polygon 5.2.9 Testing AABB against Triangle 5.2.10 Testing Triangle against Triangle 5.3 Intersecting Lines, Rays, and (Directed) Segments 5.3.1 Intersecting Segment against Plane 5.3.2 Intersecting Ray or Segment against Sphere 5.3.3 Intersecting Ray or Segment against Box 5.3.4 Intersecting Line against Triangle 5.3.5 Intersecting Line against Quadrilateral 5.3.6 Intersecting Ray or Segment against Triangle 5.3.7 Intersecting Ray or Segment against Cylinder 5.3.8 Intersecting Ray or Segment against Convex Polyhedron 5.4 Additional Tests 5.4.1 Testing Point in Polygon 5.4.2 Testing Point in Triangle 5.4.3 Testing Point in Polyhedron 5.4.4 Intersection of Two Planes 5.4.5 Intersection of Three Planes 5.5 Dynamic Intersection Tests 5.5.1 Interval Halving for Intersecting Moving Objects 5.5.2 Separating Axis Test for Moving Convex Objects 5.5.3 Intersecting Moving Sphere against Plane 5.5.4 Intersecting Moving AABB against Plane 5.5.5 Intersecting Moving Sphere against Sphere 5.5.6 Intersecting Moving Sphere against Triangle (and Polygon) 5.5.7 Intersecting Moving Sphere against AABB 5.5.8 Intersecting Moving AABB against AABB 5.6 Summary 6 Bounding Volume Hierarchies 6.1 Hierarchy Design Issues 6.1.1 Desired BVH Characteristics 6.1.2 Cost Functions 6.1.3 Tree Degree 6.2 Building Strategies for Hierarchy Construction 6.2.1 Top-Down Construction 6.2.1.1 Partitioning Strategies 6.2.1.2 Choice of Partitioning Axis 6.2.1.3 Choice of Split Point 6.2.2 Bottom-Up Construction 6.2.2.1 Improved Bottom-Up Construction 6.2.2.2 Other Bottom-Up Construction Strategies 6.2.2.3 Bottom-Up N-Ary Clustering Trees 6.2.3 Incremental (Insertion) Construction 6.2.3.1 The Goldsmith-Salmon Incremental Construction Method 6.3 Hierarchy Traversal 6.3.1 Descent Rules 6.3.2 Generic Informed Depth-First Traversal 6.3.3 Simultaneous Depth-First Traversal 6.3.4 Optimized Leaf-Direct Depth-First Traversal 6.4 Example Bounding Volume Hierarchies 6.4.1 OBB-Trees 6.4.2 AABB-Trees and BoxTrees 6.4.3 Sphere-Tree through Octree Subdivision 6.4.4 Sphere-Tree from Sphere-Covered Surfaces 6.4.5 Generate-and-Prune Sphere Covering 6.4.6 k-DOP Trees 6.5 Merging Bounding Volumes 6.5.1 Merging Two AABBs 6.5.2 Merging Two Spheres 6.5.3 Merging Two OBBs 6.5.4 Merging Two k-DOPs 6.6 Efficient Tree Representation and Traversal 6.6.1 Array Representation 6.6.2 Preorder Traversal Order 6.6.3 Offsets Instead of Pointers 6.6.4 Cache-Friendlier Structures (Non-Binary Trees) 6.6.5 Tree Node and Primitive Ordering 6.6.6 On Recursion 6.6.7 Grouping Queries 6.7 Improved Queries through Caching 6.7.1 Surface Caching: Caching Intersecting Primitives 6.7.2 Front Tracking 6.8 Summary 7 Spatial Partitioning 7.1 Uniform Grids 7.1.1 Cell Size Issues 7.1.2 Grids as Arrays of Linked Lists 7.1.3 Hashed Storage and Infinite Grids 7.1.4 Storing Static Data 7.1.5 Implicit Grids 7.1.6 Uniform Grid Object-Object Test 7.1.6.1 One Test at a Time 7.1.6.2 All Tests at a Time 7.1.7 Additional Grid Considerations 7.2 Hierarchical Grids 7.2.1 Basic Hgrid Implementation 7.2.2 Alternative Hierarchical Grid Representations 7.2.3 Other Hierarchical Grids 7.3 Trees 7.3.1 Octrees (and Quadtrees) 7.3.2 Octree Object Assignment 7.3.3 Locational Codes and Finding the Octant for a Point 7.3.4 Linear Octrees (Hash-Based) 7.3.5 Computing the Morton Key 7.3.6 Loose Octrees 7.3.7 k-d Trees 7.3.8 Hybrid Schemes 7.4 Ray and Directed Line Segment Traversals 7.4.1 k-d Tree Intersection Test 7.4.2 Uniform Grid Intersection Test 7.5 Sort and Sweep Methods 7.5.1 Sorted Linked List Implementation 7.5.2 Array-Based Sorting 7.6 Cells and Portals 7.7 Avoiding Retesting 7.7.1 Bit Flags 7.7.2 Time Stamping 7.7.3 Amortized Time Stamp Clearing 7.8 Summary 8 BSP Tree Hierarchies 8.1 BSP Trees 8.2 Types of BSP Trees 8.2.1 Node-Storing BSP Trees 8.2.2 Leaf-Storing BSP Trees 8.2.3 Solid-Leaf BSP Trees 8.3 Building the BSP Tree 8.3.1 Selecting Dividing Planes 8.3.2 Evaluating Dividing Planes 8.3.3 Classifying Polygons with Respect to a Plane 8.3.4 Splitting Polygons against a Plane 8.3.5 More on Polygon splitting Robustness 8.3.6 Tuning BSP Tree Performance 8.4 using the BSP Tree 8.4.1 Testing Point against a Solid-Leaf BSP Tree 8.4.2 Intersecting Ray against a Solid-Leaf BSP Tree 8.4.3 Polytope Queries on Solid-Leaf BSP Trees 8.5 Summary 9 Convexity-Based Methods 9.1 Boundary-Based Collision Detection 9.2 Closest Features Algorithms 9.2.1 The V-Clip Algorithm 9.3 Hierarchical Polyhedron Representations 9.3.1 The Dobkin-Kirkpatrick Hierarchy 9.4 Linear and Quadratic Programming 9.4.1 Linear Programming 9.4.1.1 Fourier-Motzkin Elimination 9.4.1.2 Seidel's Algorithm 9.4.2 Quadratic Programming 9.5 The Gilbert-Johnson-Keerthi Algorithm 9.5.1 The Gilbert-Johnson-Keerthi Algorithm 9.5.2 Finding the Point of Minimum Norm in a Simplex 9.5.3 GJK, Closest Points and Contact Manifolds 9.5.4 Hill-Climbing for Extreme Vertices 9.5.5 Exploiting Coherence by Vertex Caching 9.5.6 Rotated Objects Optimization 9.5.7 GJK for Moving Objects 9.6 The Chung-Wang Separating Vector Algorithm 9.7 Summary 10 GPU-Assisted Collision Detection 10.1 Interfacing with the GPU 10.1.1 Buffer Readbacks 10.1.2 Occlusion Queries 10.2 Testing Convex Objects 10.3 Testing Concave Objects 10.4 GPU-Based Collision Filtering 10.5 Summary 11 Numerical Robustness 11.1 Robustness Problem Types 11.2 Representing Real Numbers 11.2.1 The IEEE-754 Floating-Point Formats 11.2.2 Infinity Arithmetic 11.2.3 Floating-Point Error Sources 11.3 Robust Floating-Point Usage 11.3.1 Tolerances Comparisons for Floating-Point Values 11.3.2 Robustness through Thick Planes 11.3.3 Robustness through Sharing of Calculations 11.3.4 Robustness of Fat Objects 11.4 Interval Arithmetic 11.4.1 Interval Arithmetic Examples 11.4.2 Interval Arithmetic in Collision Detection 11.5 Exact and Semi-Exact Computation 11.5.1 Exact Arithmetic using Integers 11.5.2 On Integer Division 11.5.3 Segment Intersection using Integer Arithmetic 11.6 Further Suggestions for Improving Robustness 11.7 Summary 12 Geometrical Robustness 12.1 Vertex Welding 12.2 Computing Adjacency Information 12.2.1 Computing a Vertex-to-Face Table 12.2.2 Computing an Edge-to-Face Table 12.2.3 Testing Connectedness 12.3 Holes, Cracks, Gaps, and T-Junctions 12.4 Merging Coplanar Faces 12.4.1 Testing Coplanarity of Two Polygons 12.4.2 Testing Polygon Planarity 12.5 Triangulation and Convex Partitioning 12.5.1 Triangulation by Ear Cutting 12.5.1.1 Triangulating Polygons with Holes 12.5.2 Convex Decomposition of Polygons 12.5.3 Convex Decomposition of Polyhedra 12.5.4 Dealing with "Nondecomposable" Concave Geometry 12.6 Consistency Testing using Euler's Formula 12.7 Summary 13 Optimization 13.1 CPU Caches 13.2 Instruction Cache Optimizations 13.3 Data Cache Optimizations 13.3.1 Structure Optimizations 13.3.2 Quantized and Compressed Vertex Data 13.3.3 Prefetching and Preloading 13.4 Cache-Aware Data Structures and Algorithms 13.4.1 A Compact Static k-d Tree 13.4.2 A Compact AABB Tree 13.4.3 Cache-Obliviousness 13.5 Software Caching 13.5.1 Cached Linearization Example 13.5.2 Amortized Predictive Linearization Caching 13.6 Aliasing 13.6.1 Type-Based Alias Analysis 13.6.2 Restricted Pointers 13.6.3 Avoiding Aliasing 13.7 Parallelism through SIMD Optimizations 13.7.1 4 Spheres versus 4 Spheres SIMD Test 13.7.2 4 Spheres versus 4 AABBs SIMD Test 13.7.3 4 AABBs versus 4 AABBs SIMD Test 13.8 Branching 13.9 Summary References Index
2022-01-11 10:02:06 3MB 碰撞检测
1
Using the FreeRTOS Real Time Kernel - A Practical Guide_opened 中文版
2021-12-30 16:03:00 3.02MB FreeRTOS 中文版
1
唯一一本介绍了dx和hlsl的实时渲染书籍
2021-12-29 17:22:02 15.47MB directx real time rendering
1
YOLO宠物 YOLO实时宠物检测和识别 用于使用或测试 从我们的下载经过训练的体重文件,或者自己进行训练。 克隆项目 git clone https://github.com/pjreddie/darknet cd darknet 修改yolo源代码 vim examples/yolo.c 创建一个新的标签字符串数组。 char *pet_names[] = {"Abyssinian", "Bengal", "Birman", "Bombay", "British_Shorthair", "Egyptian_Mau", "Maine_Coon", "Persian", "Ragdoll", "Russian_Blue", "Siamese", "Sphynx", "american_bulldog", "american_pit_bull_terrier", "basset_h
2021-12-29 15:55:55 498KB real-time pet yolo object-detection
1