Machine-Learning机器学习笔记 回归分析Regression Analysis(LS,LASSO,RR,RLS,BR), 聚类Clustering(KNN, EM, Mean-shift) 数字分类Digits Classification
2021-11-01 19:27:30 2.41MB Python
1
1、从Kmeans说起 Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了。下面说一下如何在matlab中使用kmeans算法。 创建7个二维的数据点:复制代码 代码如下:x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]];使用kmeans函数:复制代码 代码如下:class = kmeans(x, 2);x是数据点,x的每一行代表一个数据;2指定要有2个中心点,也就是聚类结果要有2个簇。 class将是一个具有70个元素的列向量,这些元素依次对应70个数据点,元素值代表着其对应的数据点所处的分类号。某次运行后,class的
2021-10-30 15:26:09 96KB kmeans matlab函数 mean
1
k-means聚类算法 k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法。 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类,我们一般取欧几里得距离 3)重新计算已经得到的各个类的质心 4)迭代步骤(2)、(3)直至新的质心与原质心相等或迭代次数大于指定阈值,算法结束 算法实现 随机初始化k个质心,用dict保存质心的值以及被聚类到该簇中的所有data。 def initCent(dataSet , k): N = shape(dataSet)[1] cents = {} ran
2021-10-29 10:10:10 73KB k-means k-means算法 mean
1
聚类概念 聚类是把相似的东西分到一组,它是一个无监督问题,没有标签使用 难点: 对于有标签的有监督学习问题,标签可以便于我们来评估模型,无监督学习问题在评估上比较难一点 对于不同的参数组合,得到的学习结果,因为比较难对模型做评估,所以不能通过一个精确度的好坏来选择参数组合 K-MEANS算法 K-MEANS算法是聚类问题中,最简单,也是最实用的一个算法 基本概念 一个数据放进来,需要指定K值,来声明要得到簇的个数 质心:一个簇的数据均值,即向量各维取平均即可(迭代时使用) 距离的度量:常用欧几里得距离和余弦相似度(数据需先标准化) 优化目标 通过目标函数进行不断地优化、求解 min∑i=1K∑
2021-10-23 10:22:29 438KB mean ns 学习
1
基于Matlab实现: 模式识别 改进的K-Means++算法 实现模式分类
2021-10-15 15:08:25 1KB 模式识别 matab K-Mean K-Mean
1
mean shift的matlab代码,包括两个文件,一个是mean shift聚类函数,一个是测试程序,简单,好用
2021-10-14 14:42:16 3KB mean shift 均值漂移 聚类
1
mean shift 用c语言实现的代码,可以尝试的了解聚类过程。
2021-10-12 14:29:59 18KB mean shift source code
1
改进的基于划分算法的三维点云聚类matlab实现点云聚类算法_改进k-means_k-mean_K._源码.zip
2021-10-01 09:04:12 2KB
根据网上基于划分法k-means的聚类算法,我做了改进。可以预设一个最大的类数和一个半径,自动划分合适的类。最终将随机三维点云聚类完成后显示为不同颜色。
根据网上基于划分法k-means的聚类算法,我做了改进。可以预设一个最大的类数和一个半径,自动划分合适的类。最终将随机三维点云聚类完成后显示为不同颜色。