使用matlab,计算高光谱图像两个波段的灰度分布,灰度概率以及两幅图像的互信息熵。
2021-12-18 08:42:09 92KB MATLAB
1
基于半监督广义学习系统的高光谱图像分类
2021-12-15 14:55:31 640KB 研究论文
1
为解决高光谱数据维度高、波段之间相关性强、获取大量监督信息费时费力的问题,对高光谱图像的分类进行研究。半监督分类方法是基于传统的机器学习的一种分类方法,它可以利用少量带标签的监督信息和大量无监督信息解决获取大量监督信息问题。将分类精度高、分类时间长的孪生支持向量机分类方法与迭代速度快、收敛速度快的的
2021-12-13 17:15:35 656KB 现代电子技术
1
图像处理分析 对于HJ-1小卫星高光谱图像的处理方法
2021-12-12 16:45:56 708KB 高光谱
1
稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点,其分类错误仍然有待进一步降低.本文基于核稀疏多元逻辑回归分类误差的统计建模分析,提出一种联合核稀疏多元逻辑回归和正则化错误剔除的高光谱图像分类模型.提出的模型通过引入隐概率场,采取L1范数度量KSMLR分类误差的重尾特性建立数据保真项;利用全变差(Total Variation,TV)正则化度量隐概率场的局部空间光滑性.由Indian Pines和University of Pavia数据集等实测数据应用表明,该方法可以得到更鲁棒和更高的分类精度.
1
高光谱图像分离matlab代码具有光谱可变性的高光谱解混的数据相关多尺度模型 这个包包含作者对论文 [1] 的实现。 我们考虑使用超像素的多尺度策略,以解决具有端元可变性的光谱分离问题。 我们使用关于丰度和端元的空间规律信息(即,这些变量根据基于超像素的多尺度变换是平滑的),以便 1) 引入先验信息以提高丰度估计质量,以及2) 重新制定优化问题以显着降低方法的计算复杂度。 代码在 MATLAB 中实现,包括: example1.m - 比较算法的演示脚本 (DC1) example2.m - 比较算法的演示脚本 (DC2) example3.m - 比较算法的演示脚本 (DC3) demo_houston.m - 比较算法的演示脚本(休斯顿) demo_cuprite.m - 比较算法的演示脚本(Curite) ./MUAV/ - 包含与 MUAV 算法相关的 MATLAB 文件 ./other_methods/ - 包含 ELMM 和 PLMM 方法 ./utils/ - 有用的函数 ./DATA/ - 示例中使用的文件 README - 这个文件 重要的: 如果您使用此软件,请在任
2021-12-01 11:20:06 178.23MB 系统开源
1
提出了两种基于主成分分析与局部二值模式的高光谱图像分类算法。利用主成分分析去除高光谱图像的谱间冗余信息,对降维后的图像利用局部二值模式进行空间纹理特征分析,采用稀疏表示分类和支持向量机分别对提取的特征进行分类。其通过将主成分分析与局部二值模式相结合对高光谱图像进行特征提取,保证了高光谱图像的谱间冗余的有效去除,同时保护了高光谱图像的空间局部邻域信息,因此,此类算法不但能充分挖掘高光谱图像的谱间-空间特征,在较大程度上提高分类精度和Kappa系数,而且在高斯噪声环境中和小样本情况下也具有良好的分类性能。
2021-11-29 05:33:02 8.43MB 图像处理 高光谱图 主成分分 局部二值
1
带标签的训练样本的有限且昂贵的可用性导致以基于数据增强的监督学习的形式定义高光谱分类任务的方法的发展。 但是,大多数方法只是隐式地利用各向同性邻域中的频谱空间信息,而不是显式指示各向异性或操纵邻域系统。 在本文中,我们应用导向模板来估计局部方向的同质区域,并利用更有价值的光谱空间环境。 通过使用最佳的导向模板匹配方法,我们提出了一种数据扩充和精炼方法,以改善带有有限标记样本的任何光谱空间分类器的性能。 实验表明,该方法对许多光谱空间分类器都非常有效。
2021-11-25 18:48:20 640KB Hyperspectral image steering stencil
1
基于MCNN的_HSI_分类 文件 MCNN-CP:使用混合卷积和协方差合并的高光谱图像分类(TGARS 2021) MCNN-PS和Oct-MCNN-PS:使用混合3D八度音程和2D子像素卷积神经网络的高光谱图像分类(已提交TGARS) 1.环境设置 该代码已在配备Intel i7-9750H 2.6 GHz处理器,32 GB RAM和NVIDIA GTX1650图形卡,Python 3.6,tensorflow_gpu-1.14.0,Keras-2.2.4,CUDA 10.0, cuDNN 7.6。 请在运行此代码之前安装相关的库: pip install -r requirements.txt 2.下载日期集: IP:, UH: 上: SA:和 并将它们放入数据目录。 3.下载模型(加载模型): 代码:caor 并将它们放到models目录中。 4.下载pretrai
2021-11-24 09:05:35 8KB Python
1
高光谱图像解混 数据集 Samon 高光谱图像解混 数据集 Samon
2021-11-22 17:31:46 9.94MB 高光谱 解混 数据集 Samon
1