A校招生咨询智能问答系统主要功能模块包括资讯数据管理、用户注册管理、留言管理、网上咨询管理、智能问答、系统管理,采取面对对象的开发模式进行软件的开发和硬体的架设,能很好的满足实际使用的需求,完善了对应的软体架设以及程序编码的工作,采取MySQL作为后台数据的主要存储单元,采用JavaEE框架、JSP技术、Ajax技术进行业务系统的编码及其开发,实现了本系统的全部功能。本次报告,首先分析了研究的背景、作用、意义,为研究工作的合理性打下了基础。针对A校招生咨询智能问答系统的各项需求以及技术问题进行分析,证明了系统的必要性和技术可行性,然后对设计系统需要使用的技术软件以及设计思想做了基本的介绍,最后来实现A校招生咨询智能问答系统和部署运行使用它。
2022-01-13 20:53:41 10.51MB Java MySQL 毕业设计 毕业论文
1
信息检索实验:问答系统设计与实现 一,实验目的 本次实验目的是对问答系统的设计与实现过程有一个全面的了解。调优。 二,实验内容 本次实验中,首先要自己建立一个检索系统,从文本库中检索到与问题最相关的文档(可以是一个或多个)。然后对文档中的替代答案进行排序,删除出最相关的最后,在最相关的补充答案中解最精简的答案,这个答案可能是一个词或几个词。实验提供了一部分有标注的数据作为训练集和开发集,需要提交的那部分是去掉了标注的数据,最终通过提交答案和标准答案的相似度(BLEU-1值)来评估本次实验的效果。 三,实验过程及结果 3.1文本集合进行处理,建立索引 我在此章节分别使用了Whoosh开源库和BM25算法重构索引,效果上略有差异,Whoosh的top1变量为86%,top3为91%,BM25的top1为89%,top3为93%,BM25较优于Whoosh,具体讲解如下。 3.1.1使用开源库W
2021-12-30 12:35:21 253.88MB 系统开源
1
复旦大学NLP课程期末PJ;疫情信息问答系统
2021-12-27 12:03:16 6KB python
本代码文件.是自己亲自调试的,感谢appleyk的教程,采用java格式,有需要的小伙伴可以下载,做知识图谱一般用java比较好,python有些不足.可以给好评,谢谢
2021-12-22 14:35:25 77KB java 知识图谱
1
电影知识图谱问答系统项目总结-附件资源
2021-12-22 14:30:08 106B
1
毕设+答辩 内有项目开发进度表、演示文档(答辩)、建库建表(SQL)、项目源码、 资源
Java 模仿百度知道的一个问答系统(包含源码和数据库文件)。 自已写的一个 基于 maven + springmvc + hibernate 的问答系统, 模仿的百度知道,包括代码高亮(syntaxhighlighter),在线编辑器(simditor),弹出层等技术(layer)。如果想提高一下自已的技术,可以看一下 问答系统 百度知道
2021-12-18 17:46:21 9.67MB 问答系统 百度知道 Java maven
1
ASP源码,压缩包解压密码:www.cqlsoft.com
2021-12-12 21:02:12 2.51MB ASP
Question answering (QA) has become a popular way for humans to access billion-scale knowledge bases. Unlike web search, QA over a knowledge base gives out accurate and concise results, provided that natural language questions can be understood and mapped precisely to structured queries over the knowledge base. The challenge, however, is that a human can ask one question in many different ways. Previous approaches have natural limits due to their representations: rule based approaches only understand a small set of “canned” questions, while keyword based or synonym based approaches cannot fully understand the questions. In this paper, we design a new kind of question representation: templates, over a billion scale knowledge base and a million scale QA corpora. For example, for questions about a city’s population, we learn templates such as What’s the population of $city?, How many people are there in $city?. We learned 27 million templates for 2782 intents. Based on these templates, our QA system KBQA effectively supports binary factoid questions, as well as complex questions which are composed of a series of binary factoid questions. Furthermore, we expand predicates in RDF knowledge base, which boosts the coverage of knowledge base by 57 times. Our QA system beats all other state-of-art works on both effectiveness and efficiency over QALD benchmarks.
2021-12-11 17:34:25 720KB 问答系统 知识图谱
1