为提高信用风险评估的准确性,基于互联网行业的用户行为数据,提出一种基于长短期记忆(LSTM)神经网络和卷积神经网络(CNN)融合的深度神经网络个人信用评分方法。对每个用户的行为数据进行编码,形成一个包括时间维度和行为维度的矩阵,通过融合基于注意力机制的LSTM模型和CNN模型2个子模型,从用户原始行为数据中提取序列特征和局部特征。在真实数据集上的实验结果表明、该方法的KS指标和AUC指标均优于传统的机器学习方法和单一的LSTM卷积神经网络方法,证明了该方法在个人信用评分领域的有效性和可行性。
2021-11-23 13:20:48 1.67MB 神经网络CNN
1
(英语) 这个demo展示了如何实现卷积神经网络(CNN)对多输入的图像分类。例如,一个名为MNIST的手写数字数据集被分为上半部分和下半部分,如下图所示,上下半部分部分被送入多输入CNN。 (日本人) 这是一个卷积神经网络的演示,可以输入两种类型的图像。 有两个输入层,例如,输入层A用于输入动物面部图像,输入层B用于输入动物爪子图像,以此类推。 从 2019b 版本开始,一种称为自定义循环的方法成为可能,允许对深度学习进行更详细的自定义。为了方便尝试,手写数字的上半部分和下半部分分别从不同的输入层输入,将卷积等后得到的特征组合起来,用全连接层等进一步推进计算。 .如果您能告诉我您对此示例是否有任何更合适的数据或问题,我将不胜感激。还有一些地方还欠缺制作,希望以后继续更新。
2021-11-23 11:46:19 3.42MB matlab
1
深度卷积神经网络CNN的Theano实现(lenet),还包括一个单独的卷积层网络
2021-11-17 15:17:05 173KB cnn theano lenet
1
主要内容是采用DEAP数据集将脑电信号进行频域分段并提取其微分熵特征,为了充分利用空间特征,结合微分熵特征将其构建为一个三维脑电特征,输入到连续卷积神经网络,并最终取得了90.24%的准确率。 提出了一种脑电特征的三维输入形式,并将其输入到连续卷积神经网络中进行情感识别。三维输入的优点是在集成多个频带的微分熵特征的同时保留电极之间的空间特征。 ———————————————— 版权声明:本文为CSDN博主「qq_3196288251」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_45874683/article/details/121356408
【图像识别】基于卷积神经网络cnn实现银行卡数字识别matlab源码.zip
2021-11-16 22:25:10 2.6MB 简介
1
本ppt详细介绍了卷积神经网络的起源背景、算法原理、算法的执行过程、以及CNN的应用场景
2021-11-16 10:48:31 2.02MB 卷积神经网络 cnn原理
1
很全面,很深刻的卷积神经网络(CNN)原理讲解。
2021-11-13 21:15:26 841KB CNN原理讲解
1
利用PyTorch实现卷积神经网络LeNet-5,详情可参考博客:https://blog.csdn.net/didi_ya/article/details/121289390
2021-11-12 19:03:56 46KB python pytorch 卷积神经网络 CNN
1
打包文件包括mnist数据集,CNN代码,功能是:搭建简单的卷积神经网络训练mnist 数据集
2021-11-11 17:05:58 11.06MB 卷积神经网络 CNN 数字手写体 python
1