请参阅 Urbanowicz RJ、Meeker M、La Cava W 等人。 基于浮雕的特征选择:介绍与回顾[J]. 杂志生物医学信息学, 2018, 85: 189-203。 算法 1。 修改:将随机选择的目标实例 R_i 简化为数据集中的顺序样本。 因此,到最近命中的距离始终为 0。
2022-03-24 11:36:22 2KB matlab
1
分类问题中的特征选择一直是一个重要而又困难的问题。这类问题中要求特征选择算法不仅能够帮助分类器提高分类准确率,同时还要尽可能地减少冗余特征。因此,为了在分类问题中更好地进行特征选择,提出了一种新型的包裹式特征选择算法XGBSFS。该算法借鉴极端梯度提升(XGBoost)算法中构建树的思想过程,通过从3个重要性度量的角度来衡量特征的重要性,避免单一重要性度量的局限性;然后通过改进的序列浮动前向搜索策略(ISFFS)搜索特征子集,使最终得到的特征子集有较高的质量。在8个UCI数据集的对比实验中表明,所提算法具有很好的性能。
1
Jx-WFST:包装特征选择工具箱 《迈向人才科学家:共享与学习》--- 介绍 该工具箱提供了 13 种包装器特征选择方法 Demo_PSO提供了如何在基准数据集上应用 PSO 的示例 这些方法的源代码是基于伪代码和论文编写的 用法 采用主要功能jfs进行特征选择。 您可以通过将from FS.pso import jfs的pso更改为来切换算法 如果你想使用粒子群优化(PSO),那么你可以写 from FS.pso import jfs 如果你想使用差分进化(DE),那么你可以写 from FS.de import jfs 输入 feat :特征向量矩阵(实例x特征) label :标签矩阵(实例x 1) opts : 参数设置 N :解决方案的数量/人口规模(对于所有方法) T :最大迭代次数(对于所有方法) k : k -最近邻中的k -值 输出 Acc : 验证模型的
1
据报道,公司在股票市场上的股票价格与公司交易所在国家的宏观经济变量 (MV) 密切相关。 出于这个原因,研究人员、市场交易员、金融分析师和预测人员为了检查 MV 与股票价格之间的关联进行了大量研究,使用时间序列统计分析方法,如自回归综合移动平均 (ARIMA)、自回归移动平均 (ARMA) ) 和广义自回归条件异方差性 (GARCH)。 然而,据报道这些技术受到有限的预测能力和限制性假设的影响。 此外,为了寻求弥补这些技术的不足和局限性的方法,一些研究人员研究了无数的机器学习技术,用于衡量股市趋势并使用宏观经济变量做出交易决策。 另一方面,这些研究中有较高比例关注股票指数预测,而忽略了影响不同行业指数的 MV 的多样性。 在解决上述问题时,本研究试图检验不同部门股票价格和 MV 之间的显着性程度,并使用随机森林 (RF) 和改进的留一法交叉验证预测 30 天的头部股票价格战术和长短期记忆循环神经网络 (LSTMRNN)。 与其他时间序列技术相比,对加纳证券交易所 (GSE) 所提出模型的实证分析显示出较高的预测精度和更好的平均绝对误差。 因此,可以从后果中推断出,所提出的 MV 股票市场预测提供了一种有效的方法来自动识别和提取影响不同部门股票的 MV,并提供对股票未来价格的准确预测。
2022-03-22 12:37:23 357KB Macroeconomic Variable Inflation
1
matlab 官网下载。
2022-03-17 22:20:18 129KB FEAST
1
更新新闻!!! iLearnPlus - iFeature和iLearn的更新版本现已发布! (2021-02-28) iLearnPlus是第一个同时具有基于图形和基于Web的用户界面的机器学习平台,该平台可以构建自动机器学习管道,以使用核酸和蛋白质序列进行计算分析和预测。 iLearnPlus集成了21种机器学习算法(包括12种常规分类算法,2种整体学习框架和7种深度学习方法)和19种主要序列编码方案(总共147个特征描述符),数量超过了所有当前的Web服务器和独立服务器据我们所知,用于生物序列分析的工具。 此外,生物学家还可以使用iLearnPlus友好的GUI(图形用户界面)来顺利进行分析,与现有管道相比,显着提高了有效性和用户体验。 iLearnPlus是一个用于学术目的的开源平台,可从。 可从在线访问iLearnPlus-Basic模块。 iLearnPlus-基本模块界面:
2022-03-12 23:08:01 2.13MB Python
1
互信息法特征选择matlab程序
2022-03-12 19:20:37 868KB matlab 开发语言
1
系统论述了机器人视觉伺服发展的历史和现状。从不同角度对机器人视觉控制系统进行分类, 重点介绍了基于位置的视觉伺服系统和基于图像的视觉伺服系统。对人工神经网络在机器人视觉伺服 方面的应用情况作了介绍。 讨论了视觉伺服中图像特征的选择问题。 对机器人视觉所涉及的前沿问题进 行阐述,并指出了目前研究中所存在的问题及今后发展方向。
1
针对传统基于机器学习的流量分类方法中特征选取环节的好坏会直接影响结果精度的问题,提出一种基于卷积神经网络的流量分类算法。首先,通过对数据进行归一化处理后映射成灰度图片作为卷积神经网络的输入数据,然后,基于LeNet-5深度卷积神经网络设计适于流量分类应用的卷积层特征面及全连接层的参数,构造能够实现流量的自主特征学习的最优分类模型,从而实现网络流量的分类。所提方法可以在避免复杂显式特征提取的同时达到提高分类精度的效果。通过公开数据集和实际数据集的系列仿真实验测试结果表明,与传统分类方法相比所提算法基于改进的CNN流量分类方法不仅提高了流量分类的精度,而且减少了分类所用的时间。
1
该工具箱提供了粒子群优化 (PSO) 方法 “Main”脚本说明了 PSO 如何使用基准数据集解决特征选择问题的示例。 ****************************************************** ****************************************************** **********************************
2022-02-28 19:26:14 121KB matlab
1