注意力机制使用;卷积神经网络的变体keras实现
2022-01-25 14:39:29 512KB keras densenet 残差网络 inceptionnet
1
堆场烟雾检测对于火灾预警、保障人员与财产安全具有重要意义。针对传统烟雾检测方法特征提取不充分,误报率偏高以及稳健性较差的问题,提出一种基于并行深度残差网络的堆场烟雾检测方法。该方法利用目标场景烟雾RGB图像的R、G、B分量以及图像HSI变换的H、S、I分量构建并行深度残差网络,自适应获得烟雾特征;同时通过样本扩边、负样本强化学习策略来加强模型对类烟物体的判别能力。实验结果表明,该算法能有效降低因类烟物体产生的误报率,且提升了网络的检出率和稳健性。
2021-12-30 21:40:56 6.01MB 图像处理 图像识别 堆场 烟雾检测
1
使用tensorflow简单实现了残差网络的block模块以及 bottleneck模块,并在cifar-10数据集上进行了简单测试
2021-12-30 20:33:43 3KB 残差网络 cifar-10测试 深度学习
1
基于KPCA残差方向梯度的故障检测方法及应用.pdf,针对核主元分析(KPCA)在应用过程中非线性映射不存在原像、故障变量无法辨识、工程应用困难等问题,提出了一种改进的KPCA残差方向梯度故障检测方法。利用主元统计量和残差统计量的偏微分之间存在着相关性这一性质,对与主元统计量相关的格拉姆矩阵偏微分中间计算过程进行优化,提出一种新的KPCA残差方向梯度算法,在此基础上结合统计量形成系统故障检测的新方法。非线性系统仿真表明,改进的KPCA残差方向梯度法不仅具有较优的故障变量辨识能力,还极大地减小了计算量,缩短了计算时间。大型热力系统的应用进一步表明,无论对于单故障和多故障的情况,方法均具有较好的故障检测能力,并且不存在残差污染,易于工程实现。
2021-12-26 09:45:54 3.96MB 论文研究
1
3.残差分析,作残差图: rcoplot(r,rint) 从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第二个数据可视为异常点. 4.预测及作图: z=b(1)+b(2)* plot(x,Y,'k+',x,z,'r') 返回 To MATLAB(liti12)
2021-12-21 01:58:00 1.35MB 数学建模
1
推荐SYS_with_movielens 使用FunkSVD,FM,itemCF / UserCF,使用残差网络的宽带和深度,使用残差网络的deepFM等构建ResSys。我尝试尽快收集所有算法。 我提供了一些基于movielens的算法 SVD: FunkSVD: BiasSVD: SVD ++ 因子分解机:FM 协同过滤 深度学习(tensorflow 2.x)宽而深 深度fm NFM
2021-12-20 09:33:44 41KB JupyterNotebook
1
多元回归-最小二乘法-残差分析笔记 一.多元线性回归模型的假设 我们需要进行以下六个假设,这些假设是经典的多元线性回归模型有效的前提: 1、因变量Y和自变量X1,X2,…,Xk之间的关系是线性的。 2、自变量(X1,X2,…,Xk)不是随机的。而且,两个或多个自变量之间不存在精确的线性关系。 3、以自变量为条件的残差的期望值为0:E(ε|X1,X2,…,Xk)=0。 4、残差项的方差对于所有观察值都是相同的:E(εi2)=σε2。 5、残差项在各个观测值之间是不相关的:E(εiεj)=0,j≠i。 6、残差项是正态分布的。 二.计量经济学中的普通最小二乘法(OLS)的4个基本假设条件分别为:
2021-12-14 22:14:26 236KB 回归 多元回归 最小二乘法
1
射频网 论文代码 我们在赛中获得第一名,接受的研讨会论文和代码即将发布。 模型文件已上传!您可以使用来训练我们的RFDN并使用在重现结果 预训练的模型和测试代码已上传,现在您可以运行test.py来获得挑战的结果。
2021-12-13 20:28:03 1.56MB Python
1
当前主流的眼底视网膜血管分割方法存在细微血管细粒度特征很难采集和细节容易丢失的问题。为解决这一问题,设计了一种改进U-Net模型算法,该算法将U-Net上下采样中的原始卷积层改为二次循环残差卷积层,提升了特征的使用效率;在解码部分引入多通道注意力模型,改善了低对比度下细小血管的分割效果。该算法在DRIVE (Digital Retinal Images for Vessel Extraction)和STARE (Structured Analysis of the Retina)两个数据库的准确率分别为96.89%和97.96%,敏感度分别为80.28%和82.27%,AUC(Area Under Curve)性能分别为98.41%和98.65%,较现有的先进算法有一定的提升。本文所提算法能有效提高眼底图像细微血管分割准确率。
2021-12-10 16:58:43 4.43MB 图像处理 视网膜血 U-Net 循环残差
1
adaptburgers_mol.zip 包含简单的 matlab 代码,这些代码使用 ode15s 作为时间步进方法的线法和空间径向基函数的自适应残差二次采样来求解一维时间相关的伯格斯方程。 参考: TA Driscoll 和 ARH Heryudono 径向基函数插值和搭配问题的自适应残差二次采样方法,提交给。 计算。 数学。 应用程序论文可从以下网址下载: http://www.math.udel.edu/php/deptapps/techrept.php?year=2006 解压文件,然后运行adaptburgers_mol.m 可以修改代码以解决其他一维非线性 pdes,例如 Allen-Cahn 等。 更多代码可以下载 http://www.math.udel.edu/~heryudon/research.html
2021-12-09 19:54:02 3KB matlab
1