OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,支持delphi 7\8\9\10\10.2
2024-06-12 14:08:12 115.36MB opencv delphi delphi opencv
1
基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。 基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过的97分高分课程大作业项目,代码完整下载可用。基于python+opencv实现的实时视频目标检测项目源码(期末大作业).zip 已获导师指导并通过
2024-06-11 09:06:51 71.93MB opencv python 目标检测 期末大作业
基于opencv的双目相机标定程序,用的张正友的方法,非常好用的程序,使用前需要先获得单目相机标定的参数,然后带入此双目程序,再根据拍摄的两相机公共视场下的棋盘格的图像,就可以解算出两相机之间的位置关系,建立双目坐标系。
OpenCV级联分类器识别车辆实践笔记中所涉及到的资源
2024-06-05 16:40:57 2.32MB opencv
1
import cv2 as cv def ORB_Feature(img1, img2): # 初始化ORB orb = cv.ORB_create() # 寻找关键点 kp1 = orb.detect(img1) kp2 = orb.detect(img2) # 计算描述符 kp1, des1 = orb.compute(img1, kp1) kp2, des2 = orb.compute(img2, kp2) # 画出关键点 outimg1 = cv.drawKeypoints(img1, keypoints=kp1, outImage=None) outimg2 = cv.drawKeypoints(img2, keypoints=kp2, outImage=None)
2024-06-03 16:11:38 8.13MB python opencv
1
图像处理与计算机视觉算法及应用例程.rar
1
yolov3-tiny训练模型,用pytorch框架搭建,让高配置的电脑,笔记本也能训练v3tiny模型,并且部署到树莓派等视觉实践项目中进行视频实时目标检测,优点在于检测速度快,模型体积小,方便部署和搭建,对于很多新手小白来说十分友好,该模型搭配我博客所讲的方法可以让你们快速入门进行目标检测项目,YOLOv3是一种基于深度神经网络的对象识别和定位算法,其最大的特点是运行速度很快,可以用于实时系统。而YOLOv3-tiny是YOLOv3的简化版。YOLOv3-tiny是YOLO系列中的一个目标检测模型。它是基于深度学习算法的目标检测模型,具有较快的检测速度和较低的计算资源要求。YOLOv3-tiny相对于YOLOv4-tiny在性能上有所下降,但仍然可以实现一定的目标检测准确率。yolov3-tiny 相对于其他版本的 yolo 网络有以下优势yolov3-tiny 具有更快的推理速度,适用于对实时性要求较高的应用场景。 yolov3-tiny 在保持较高检测精度的同时,具有更小的模型体积,占用更少的存储空间。 yolov3-tiny 适合于在计算资源有限的设备上进行目标检测任务。
2024-05-29 19:19:37 1014KB pytorch 目标检测 yolov3 yolov3-tiny
1
vs2008 Opencv2.4.2 视频如何转化图片的代码,使用Opencv函数。
2024-05-29 02:17:40 1KB video image
1
opencv逐帧读取视频转存jpg,一件运行exe
2024-05-29 02:15:00 260.48MB opencv 源码软件 人工智能 计算机视觉
1
图像预处理:对输入的仪表图像进行灰度化预处理,以提高后续图像识别算法的准确性。 仪表区域定位:基于FLANN的匹配器进行模版匹配,将仪表在图像中的位置进行定位并提取出来。 指针识别:采用Kmeans算法把图像进行二值化分割,同时只保留内切圆部分,采用旋转虚拟直线法获取指针在表盘的角度。 读数:根据得到的指针角度通过标定的刻度、圆心数据,采用圆心角计算法读出当前仪表刻度
2024-05-28 19:03:01 4.71MB opencv python
1